Close
New

Medscape is available in 5 Language Editions – Choose your Edition here.

 

IgA and IgG Subclass Deficiencies Medication

  • Author: Terry W Chin, MD, PhD; Chief Editor: Harumi Jyonouchi, MD  more...
 
Updated: Aug 15, 2014
 

Medication Summary

The use of antibiotics to treat infections caused by S pneumoniae, H influenzae, and Moraxella catarrhalis must be aggressive. Prophylactic antibiotics can be beneficial in selected cases

Intravenous immunoglobulin (IVIg) is not a conventional therapy and has not been approved by the US Food and Drug Administration (FDA) for selective IgA deficiency, IgG subclass deficiency, or specific antibody deficiency. For empiric use of IVIg in these patients, clinicians must consider the expense and current shortage of IVIg supplies in the United States. In addition, exercise caution in patients with absent IgA serum levels because of the possibility of anaphylaxis with all IVIg preparations, except for Gammagard.

The overall consensus among clinical immunologists is that a dosage of IVIg of 400-600 mg/kg/mo or a dosage that maintains trough serum IgG levels of more than 500 mg/dL is desirable. Patients with X-linked agammaglobulinemia and meningoencephalitis require dosages of 1 g/kg and perhaps intrathecal therapy. Measurement of preinfusion (trough) serum IgG levels every 3 months until a steady state is achieved and then every 6 months if the patient is stable may be helpful in adjusting the dosage to achieve adequate serum levels. For persons who have a high catabolism of infused IgG, frequent infusions (eg, every 2-3 wk) of small doses may maintain the serum level in the reference range. The rate of elimination of IgG may be increased during active infection; measuring serum IgG levels and increasing dosages or shortening intervals may be required.

For replacement therapy in patients with primary immune deficiency, all brands of IVIg are probably equivalent, although viral-inactivation processes differ (eg, solvent detergent washing vs pasteurization, liquid vs lyophilized methods). The choice may depend on the hospital or home-care formulary and on local availability and cost. The dosage, manufacturer, and lot number should be recorded for each infusion to review then for adverse events or other consequences. Recording all adverse effects that occur during the infusion is crucial. Monitoring liver and renal function periodically, approximately 3-4 times yearly, is also recommended.

The FDA recommends that, for patients at risk for renal failure (eg, those with preexisting renal insufficiency diabetes, volume depletion, sepsis, paraproteinemia, age >65 y, and use nephrotoxic drugs), recommended dosages should not be exceeded, and infusion rates and concentrations should be the minimum practical levels.

Initial treatment should be administered under the close supervision of experienced personnel. The risk of adverse reactions in the initial treatments is high, especially in patients with infections and in those who form immune complexes. In patients with active infection, infusion rates may need to be slowed and the dose halved (ie, 200-300 mg/kg), with the remaining dose given the next day to achieve a full dose. Treatment should not be discontinued. After normal serum IgG levels are achieved, adverse reactions are uncommon unless patients have active infections.

With the new generation of IVIg products, adverse effects are reduced. Adverse effects include tachycardia, chest tightness, back pain, arthralgia, myalgia, hypertension or hypotension, headache, pruritus, rash, and low-grade fever. Relatively serious reactions are dyspnea, nausea, vomiting, circulatory collapse, and loss of consciousness. Patients with profound immunodeficiency or patients with active infections tend to have severe reactions.

Anticomplementary activity of IgG aggregates in the IVIg, and the formation of immune complexes are thought to be related to adverse reactions. The formation of oligomeric or polymeric IgG complexes that interact with Fc receptors and that trigger the release of inflammatory mediators is another cause. Most adverse reactions are rate related. Slowing the infusion rate or discontinuing therapy until symptoms subside may diminish the reaction. Pretreatment with ibuprofen at 5-10 mg/kg every 6-8 hours, acetaminophen at 15 mg/kg/dose, diphenhydramine at 1 mg/kg/dose, and/or hydrocortisone at 6 mg/kg/dose (maximum, 100 mg) 1 hour before the infusion may prevent adverse reactions. In some patients with a history of severe adverse effects, analgesics and antihistamines may be repeated.

Acute renal failure is a rare but important complication of IVIg treatment. Reports suggest that IVIg products with sucrose as a stabilizer may be associated with a heightened risk for this renal complication. Acute tubular necrosis, vacuolar degeneration, and osmotic nephrosis suggest osmotic injury to the proximal renal tubules. The infusion rate for sucrose-containing IVIg should not exceed 3 mg sucrose/kg/min. Risk factors for this adverse reaction include preexisting renal insufficiency, diabetes mellitus, dehydration, age older than 65 years, sepsis, paraproteinemia, and concomitant use of nephrotoxic agents. For patients at increased risk, BUN and creatinine levels should be monitored before the start of treatment and before each infusion. If renal function deteriorates, the product should be discontinued.

IgE antibodies to IgA are reported to cause severe transfusion reactions in IgA-deficient patients. A few reports describe true anaphylaxis in patients with selective IgA deficiency and common variable immunodeficiency (CVID) who developed IgE antibodies to IgA after treatment with Ig. However, in clinical experience, this is rare. In addition, this is not a problem for patients with X-linked agammaglobulinemia (Bruton disease) or severe combined immunodeficiency (SCID). Caution should be exercised in patients with Ig deficiency (< 7 mg/dL) who need IVIg because of IgG subclass deficiencies. IVIg preparations with low concentrations of contaminating IgA are advised (see the Table below).

Table. Immune Globulin, Intravenous[56, 57, 58, 59] (Open Table in a new window)

Brand(Manufacturer) Manufacturing Process pH Additives (IVIg products containing sucrose are most often associated with renal dysfunction, acute renal failure, and osmotic nephrosis, particularly with preexisting risk factors [eg, history of renal insufficiency, diabetes mellitus, age >65 y, dehydration, sepsis, paraproteinemia, nephrotoxic drugs]) Parenteral Form and Final Concentrations IgA Content mcg/mL
Carimune NF



(CSL Behring)



Kistler-Nitschmann fractionation; pH 4, nanofiltration 6.4-6.8 6% solution: 10% sucrose, < 20 mg NaCl/g protein Lyophilized powder 3%, 6%, 9%, 12% Trace
Flebogamma



(Grifols USA)



Cohn-Oncley fractionation, PEG precipitation, ion-exchange chromatography, pasteurization 5.1-6 Sucrose free, contains 5% D-sorbitol Liquid 5% < 50
Gammagard Liquid 10%



(Baxter Bioscience)



Cohn-Oncley cold ethanol fractionation, cation and anion exchange chromatography, solvent detergent treated, nanofiltration, low pH incubation 4.6-5.1 0.25M glycine Ready-for-use Liquid 10% 37
Gamunex



(Talecris Biotherapeutics)



Cohn-Oncley fractionation, caprylate-chromatography purification, cloth and depth filtration, low pH incubation 4-4.5 Does not contain carbohydrate stabilizers (eg, sucrose, maltose), contains glycine Liquid 10% 46
Gammaplex



(Bio Products)



Solvent/detergent treatment targeted to enveloped viruses; virus filtration using Pall Ultipor to remove small viruses including nonenveloped viruses; low pH incubation 4.8-5.1 Contains sorbitol (40 mg/mL); do not administer if fructose intolerant Ready-for-use solution 5% < 10
Iveegam EN



(Baxter Bioscience)



Cohn-Oncley fraction II/III; ultrafiltration; pasteurization 6.4-7.2 5% solution: 5% glucose, 0.3% NaCl Lyophilized powder 5% < 10
Polygam S/D



Gammagard S/D



(Baxter Bioscience for the American Red Cross)



Cohn-Oncley cold ethanol fractionation, followed by ultracentrafiltration and ion exchange chromatography; solvent detergent treated 6.4-7.2 5% solution: 0.3% albumin, 2.25% glycine, 2% glucose Lyophilized powder 5%, 10% < 1.6 (5% solution)
Octagam



(Octapharma USA)



9/24/10: Withdrawn from market because of unexplained reports of thromboembolic events



Cohn-Oncley fraction II/III; ultrafiltration; low pH incubation; S/D treatment pasteurization 5.1-6 10% maltose Liquid 5% 200
Panglobulin



(Swiss Red Cross for the American Red Cross)



Kistler-Nitschmann fractionation; pH 4 incubation, trace pepsin, nanofiltration 6.6 Per gram of IgG: 1.67 g sucrose, < 20 mg NaCl Lyophilized powder 3%, 6%, 9%, 12% 720
Privigen Liquid 10%



(CSL Behring)



Cold ethanol fractionation, octanoic acid fractionation, and anion exchange chromatography; pH 4 incubation and depth filtration 4.6-5 L-proline (approximately 250 mmol/L) as stabilizer; trace sodium; does not contain carbohydrate stabilizers (eg, sucrose, maltose) Ready-for use liquid 10% < 25
Next

Immunoglobulin

Class Summary

Subcutaneous administration of immune globulin may be considered for some patients.

Immune globulin subcutaneous (Vivaglobin)

 

IgG antibodies that neutralize a wide variety of bacterial and viral agents. Neutralizes circulating myelin antibodies through anti-idiotypic antibodies; down-regulates proinflammatory cytokines, including INF-gamma; blocks Fc receptors on macrophages; suppresses inducer T and B cells and augments suppressor T cells; blocks complement cascade. Peak serum IgG levels are lower and trough IgG levels are higher than those achieved with IVIG. SC administration results in stable steady-state IgG levels when administered weekly. Available as a 160-mg/mL SC injectable.

Previous
 
 
Contributor Information and Disclosures
Author

Terry W Chin, MD, PhD Associate Clinical Professor, Department of Pediatrics, University of California, Irvine, School of Medicine; Associate Director, Cystic Fibrosis Center, Attending Staff Physician, Department of Pediatric Pulmonology, Allergy, and Immunology, Memorial Miller Children's Hospital

Terry W Chin, MD, PhD is a member of the following medical societies: American Academy of Allergy Asthma and Immunology, American Association of Immunologists, American College of Allergy, Asthma and Immunology, American College of Chest Physicians, American Federation for Clinical Research, American Thoracic Society, California Society of Allergy, Asthma and Immunology, California Thoracic Society, Clinical Immunology Society, Los Angeles Pediatric Society, Western Society for Pediatric Research

Disclosure: Nothing to disclose.

Specialty Editor Board

Mary L Windle, PharmD Adjunct Associate Professor, University of Nebraska Medical Center College of Pharmacy; Editor-in-Chief, Medscape Drug Reference

Disclosure: Nothing to disclose.

Chief Editor

Harumi Jyonouchi, MD Faculty, Division of Allergy/Immunology and Infectious Diseases, Department of Pediatrics, Saint Peter's University Hospital

Harumi Jyonouchi, MD is a member of the following medical societies: American Academy of Allergy Asthma and Immunology, American Academy of Pediatrics, American Association of Immunologists, American Medical Association, Clinical Immunology Society, New York Academy of Sciences, Society for Experimental Biology and Medicine, Society for Pediatric Research, Society for Mucosal Immunology

Disclosure: Nothing to disclose.

Acknowledgements

John Wilson Georgitis, MD Consulting Staff, Lafayette Allergy Services

John Wilson Georgitis, MD is a member of the following medical societies: American Academy of Allergy Asthma and Immunology, American Academy of Pediatrics, American Association for the Advancement of Science, American College of Chest Physicians, American Lung Association, American Medical Writers Association, and American Thoracic Society

Disclosure: Nothing to disclose.

References
  1. Gathmann B, Binder N, Ehl S, Kindle G. The European internet-based patient and research database for primary immunodeficiencies: update 2011. Clin Exp Immunol. 2012 Mar. 167(3):479-91. [Medline]. [Full Text].

  2. Plebani A, Ugazio AG, Meini A, et al. Extensive deletion of immunoglobulin heavy chain constant region genes in the absence of recurrent infections: when is IgG subclass deficiency clinically relevant?. Clin Immunol Immunopathol. 1993 Jul. 68(1):46-50. [Medline].

  3. Blutt SE, Miller AD, Salmon SL, Metzger DW, Conner ME. IgA is important for clearance and critical for protection from rotavirus infection. Mucosal Immunol. 2012 Jun 27. [Medline].

  4. Santaella ML, Peredo R, Disdier OM. IgA deficiency: clinical correlates with IgG subclass and mannan-binding lectin deficiencies. P R Health Sci J. 2005 Jun. 24(2):107-10. [Medline].

  5. Anantaphruti MT, Nuamtanong S, Dekumyoy P. Diagnostic values of IgG4 in human gnathostomiasis. Trop Med Int Health. 2005 Oct. 10(10):1013-21. [Medline].

  6. Constantin C, Huber WD, Granditsch G, et al. Different profiles of wheat antigens are recognised by patients suffering from coeliac disease and IgE-mediated food allergy. Int Arch Allergy Immunol. 2005 Nov. 138(3):257-66. [Medline].

  7. Palmer DS, O'Toole J, Montreuil T, et al. Screening of Canadian Blood Services donors for severe immunoglobulin A deficiency. Transfusion. 2010 Jul. 50(7):1524-31. [Medline].

  8. Weber-Mzell D, Kotanko P, Hauer AC, et al. Gender, age and seasonal effects on IgA deficiency: a study of 7293 Caucasians. Eur J Clin Invest. 2004 Mar. 34(3):224-8. [Medline].

  9. Aghamohammadi A, Cheraghi T, Gharagozlou M, et al. IgA deficiency: correlation between clinical and immunological phenotypes. J Clin Immunol. 2009 Jan. 29(1):130-6. [Medline].

  10. Aghamohammadi A, Mohammadi J, Parvaneh N, et al. Progression of selective IgA deficiency to common variable immunodeficiency. Int Arch Allergy Immunol. 2008. 147(2):87-92. [Medline].

  11. Priyadarsi A, Sankar J. H1N1 infection associated with persistent lower respiratory tract illness in an infant with isolated IgA deficiency. BMJ Case Rep. 2012 Feb 21. 2012:[Medline].

  12. Aytekin C, Tuygun N, Gokce S, Dogu F, Ikinciogullari A. Selective IgA Deficiency: Clinical and Laboratory Features of 118 Children in Turkey. J Clin Immunol. 2012 May 1. [Medline].

  13. Shkalim V, Monselize Y, Segal N, Zan-Bar I, Hoffer V, Garty BZ. Selective IgA deficiency in children in Israel. J Clin Immunol. 2010 Sep. 30(5):761-5. [Medline].

  14. Franco A, Parrella R, Murru F, et al. Lack of association between IgA deficiency and respiratory atopy in young male adults. In Vivo. 2011 Sep-Oct. 25(5):829-32. [Medline].

  15. Siriaksorn S, Suchaitanawanit S, Trakultivakorn M. Allergic rhinitis and immunoglobulin deficiency in preschool children with frequent upper respiratory illness. Asian Pac J Allergy Immunol. 2011 Mar. 29(1):73-7. [Medline].

  16. Janzi M, Kull I, Sjoberg R, et al. Selective IgA deficiency in early life: association to infections and allergic diseases during childhood. Clin Immunol. 2009 Oct. 133(1):78-85. [Medline].

  17. Gold PW, Pavlatou MG, Carlson PJ, et al. Unmedicated, remitted patients with major depression have decreased serum immunoglobulin A. Neurosci Lett. 2012 Jun 27. 520(1):1-5. [Medline].

  18. Feng ML, Zhao YL, Shen T, et al. Prevalence of immunoglobulin A deficiency in Chinese blood donors and evaluation of anaphylactic transfusion reaction risk. Transfus Med. 2011 Oct. 21(5):338-43. [Medline].

  19. Basturk B, Sari S, Aral A, Dalgic B. Prevalence of selective immunoglobulin A deficiency in healthy Turkish school children. Turk J Pediatr. 2011 Jul-Aug. 53(4):364-8. [Medline].

  20. Yel L. Selective IgA deficiency. J Clin Immunol. 2010 Jan. 30(1):10-6. [Medline]. [Full Text].

  21. Ramanujam R, Piehl F, Pirskanen R, Gregersen PK, Hammarstrom L. Concomitant autoimmunity in myasthenia gravis--lack of association with IgA deficiency. J Neuroimmunol. 2011 Jul. 236(1-2):118-22. [Medline]. [Full Text].

  22. Jorgensen GH, Ornolfsson AE, Johannesson A, et al. Association of immunoglobulin A deficiency and elevated thyrotropin-receptor autoantibodies in two Nordic countries. Hum Immunol. 2011 Feb. 72(2):166-72. [Medline].

  23. Chow MA, Lebwohl B, Reilly NR, Green PH. Immunoglobulin A Deficiency in Celiac Disease. J Clin Gastroenterol. 2012 Apr 2. [Medline].

  24. Carr TF, Koterba AP, Chandra R, et al. Characterization of specific antibody deficiency in adults with medically refractory chronic rhinosinusitis. Am J Rhinol Allergy. 2011 Jul-Aug. 25(4):241-4. [Medline]. [Full Text].

  25. Tuerlinckx D, Vermeulen F, Pekus V, et al. Optimal assessment of the ability of children with recurrent respiratory tract infections to produce anti-polysaccharide antibodies. Clin Exp Immunol. 2007 Aug. 149(2):295-302. [Medline]. [Full Text].

  26. Boyle RJ, Le C, Balloch A, Tang ML. The clinical syndrome of specific antibody deficiency in children. Clin Exp Immunol. 2006 Dec. 146(3):486-92. [Medline]. [Full Text].

  27. van Kessel DA, van Velzen-Blad H, van den Bosch JM, Rijkers GT. Impaired pneumococcal antibody response in bronchiectasis of unknown aetiology. Eur Respir J. 2005 Mar. 25(3):482-9. [Medline].

  28. Vendrell M, de Gracia J, Rodrigo MJ, et al. Antibody production deficiency with normal IgG levels in bronchiectasis of unknown etiology. Chest. 2005 Jan. 127(1):197-204. [Medline].

  29. Wiertsema SP, Veenhoven RH, Sanders EA, Rijkers GT. Immunologic screening of children with recurrent otitis media. Curr Allergy Asthma Rep. 2005 Jul. 5(4):302-7. [Medline].

  30. Cheng YK, Decker PA, O'Byrne MM, Weiler CR. Clinical and laboratory characteristics of 75 patients with specific polysaccharide antibody deficiency syndrome. Ann Allergy Asthma Immunol. 2006 Sep. 97(3):306-11. [Medline].

  31. Costa Carvalho BT, Nagao AT, Arslanian C, et al. Immunological evaluation of allergic respiratory children with recurrent sinusitis. Pediatr Allergy Immunol. 2005 Sep. 16(6):534-8. [Medline].

  32. Mrabet-Dahbi S, Breuer K, Klotz M, et al. Deficiency in immunoglobulin G2 antibodies against staphylococcal enterotoxin C1 defines a subgroup of patients with atopic dermatitis. Clin Exp Allergy. 2005 Mar. 35(3):274-81. [Medline].

  33. Gregorek H, Dzierzanowska-Fangrat K, Woynarowski M, Jozwiak P, Witkowska-Vogtt E, Socha J, et al. Persistence of HBV-DNA in children with chronic hepatitis B who seroconverted to anti-HBs antibodies after interferon-alpha therapy: correlation with specific IgG subclass responses to HBsAg. J Hepatol. 2005 Apr. 42(4):486-90. [Medline].

  34. de Laat PC, Weemaes CM, Bakkeren JA, et al. Familial selective IgA deficiency with circulating anti-IgA antibodies: a distinct group of patients?. Clin Immunol Immunopathol. 1991 Jan. 58(1):92-101. [Medline].

  35. Swedo SE, Leckman JF, Rose NR. (2012) From research subgroup to clinical syndrome: modifying the PANDAS criteria to describe PANS (pediatric acute-onset neuropsychiatric syndrome. Pediatr Therapeut. 2012. 2:2.

  36. Murphy TK, Storch EA, Lewin AB et al. (2012). Clinical factors associated with pediatric autoimmune neuropsychiatric disorders associated with streptococcal infections. J Pediatr. 2012. 160:314-9.

  37. Schaffer FM. Clinical assessment and management of abnormal IgA levels. Ann Allergy Asthma Immunol. 2008 Mar. 100(3):280-2. [Medline].

  38. Browning MJ. Specific polysaccharide antibody deficiency in chromosome 18p deletion syndrome and immunoglobulin A deficiency. J Investig Allergol Clin Immunol. 2010. 20(3):263-6. [Medline].

  39. Toptygina AP, Pukhalsky AL, Alioshkin VA. Immunoglobulin G subclass profile of antimeasles response in vaccinated children and in adults with measles history. Clin Diagn Lab Immunol. 2005 Jul. 12(7):845-7. [Medline]. [Full Text].

  40. Tanaka M, Seki G, Ishizawa K, wet al. Resolution of Henoch-Schönlein purpura nephritis after acquired IgA deficiency. Pediatr Nephrol. 2010 Nov. 25(11):2355-8. [Medline].

  41. Paris K, Sorensen RU. Assessment and clinical interpretation of polysaccharide antibody responses. Ann Allergy Asthma Immunol. 2007 Nov. 99(5):462-4. [Medline].

  42. Freeman JA, Crassini KR, Best OG, et al. Immunoglobulin G (IgG) subclass deficiency and infection risk in 150 patients with chronic lymphocytic leukaemia. Leuk Lymphoma. 2012 Jun 27. [Medline].

  43. Shakkottai A, Bupathi K, Patel AP, et al. Children with partial IgA deficiency: clinical characteristics observed in the pediatric rheumatology clinic. Clin Pediatr (Phila). 2012 Jan. 51(1):46-50. [Medline].

  44. Fusaro AE, Fahl K, Cardoso EC, et al. Profile of autoantibodies against phosphorylcholine and cross-reactivity to oxidation-specific neoantigens in selective IgA deficiency with or without autoimmune diseases. J Clin Immunol. 2010 Nov. 30(6):872-80. [Medline].

  45. Rezaei N, Aghamohammadi A, Siadat SD, et al. Serum bactericidal antibody response to serogroup C polysaccharide meningococcal vaccination in children with primary antibody deficiencies. Vaccine. 2007 Jul 20. 25(29):5308-14. [Medline].

  46. Kamchaisatian W, Wanwatsuntikul W, Sleasman JW, Tangsinmankong N. Validation of current joint American Academy of Allergy, Asthma & Immunology and American College of Allergy, Asthma and Immunology guidelines for antibody response to the 23-valent pneumococcal vaccine using a population of HIV-infected children. J Allergy Clin Immunol. 2006 Dec. 118(6):1336-41. [Medline].

  47. Garside JP, Kerrin DP, Brownlee KG, Gooi HC, Taylor JM, Conway SP. Immunoglobulin and IgG subclass levels in a regional pediatric cystic fibrosis clinic. Pediatr Pulmonol. 2005 Feb. 39(2):135-40. [Medline].

  48. Ozkan H, Atlihan F, Genel F, Targan S, Gunvar T. IgA and/or IgG subclass deficiency in children with recurrent respiratory infections and its relationship with chronic pulmonary damage. J Investig Allergol Clin Immunol. 2005. 15(1):69-74. [Medline].

  49. Kutukculer N, Karaca NE, Demircioglu O, Aksu G. Increases in serum immunoglobulins to age-related normal levels in children with IgA and/or IgG subclass deficiency. Pediatr Allergy Immunol. 2007 Mar. 18(2):167-73. [Medline].

  50. Cohn JA, Skorpinski E, Cohn JR. Prevention of pneumococcal infection in a patient with normal immunoglobulin levels but impaired polysaccharide antibody production. Ann Allergy Asthma Immunol. 2006 Nov. 97(5):603-5. [Medline].

  51. Sorensen RU, Leiva LE, Giangrosso PA, et al. Response to a heptavalent conjugate Streptococcus pneumoniae vaccine in children with recurrent infections who are unresponsive to the polysaccharide vaccine. Pediatr Infect Dis J. 1998 Aug. 17(8):685-91. [Medline].

  52. Meyts I, Bossuyt X, Proesmans M, De B. Isolated IgG3 deficiency in children: to treat or not to treat? Case presentation and review of the literature. Pediatr Allergy Immunol. 2006 Nov. 17(7):544-50. [Medline].

  53. Garcia-Lloret M, McGhee S, Chatila TA. Immunoglobulin replacement therapy in children. Immunol Allergy Clin North Am. 2008 Nov. 28(4):833-49, ix. [Medline]. [Full Text].

  54. Karaca NE, Gulez N, Aksu G, Azarsiz E, Kutukculer N. Does OM-85 BV prophylaxis trigger autoimmunity in IgA deficient children?. Int Immunopharmacol. 2011 Nov. 11(11):1747-51. [Medline].

  55. Borte S, Pan-Hammarstrom Q, Liu C, et al. Interleukin-21 restores immunoglobulin production ex vivo in patients with common variable immunodeficiency and selective IgA deficiency. Blood. 2009 Nov 5. 114(19):4089-98. [Medline].

  56. Hooper JA. Intravenous immunoglobulins: evolution of commercial IVIG preparations. Immunol Allergy Clin North Am. 2008 Nov. 28(4):765-78, viii. [Medline].

  57. Siegel J. The product: All intravenous immunoglobulins are not equivalent. Pharmacotherapy. 2005 Nov. 25(11 Pt 2):78S-84S. [Medline].

  58. Shah S. Pharmacy considerations for the use of IGIV therapy. Am J Health Syst Pharm. 2005 Aug 15. 62(16 Suppl 3):S5-11. [Medline].

  59. Sorensen RU, Leiva LE, Javier FC 3rd, et al. Influence of age on the response to Streptococcus pneumoniae vaccine in patients with recurrent infections and normal immunoglobulin concentrations. J Allergy Clin Immunol. 1998 Aug. 102(2):215-21. [Medline].

  60. Lawton AR. IgG subclass deficiency and the day-care generation. Pediatr Infect Dis J. 1999 May. 18(5):462-6. [Medline].

  61. Wolpert J, Knutsen AP. Natural history of selective antibody deficiency to bacterial polysaccharide antigens in children. Pediatr Asthma Allergy Immunol. 1998. 12:183-91.

  62. Papadopoulou A, Mermiri D, Taousani S, Triga M, Nicolaidou P, Priftis KN. Bronchial hyper-responsiveness in selective IgA deficiency. Pediatr Allergy Immunol. 2005 Sep. 16(6):495-500. [Medline].

  63. Abrahamian F, Agrawal S, Gupta S. Immunological and clinical profile of adult patients with selective immunoglobulin subclass deficiency: response to intravenous immunoglobulin therapy. Clin Exp Immunol. Mar 2010. 159:344-50. [Medline].

  64. Cunningham-Rundles C, Brandeis WE, Pudifin DJ, Day NK, Good RA. Autoimmunity in selective IgA deficiency: relationship to anti-bovine protein antibodies, circulating immune complexes and clinical disease. Clin Exp Immunol. 1981 Aug. 45(2):299-304. [Medline]. [Full Text].

  65. Jeurissen A, Moens L, Raes M, et al. Laboratory diagnosis of specific antibody deficiency to pneumococcal capsular polysaccharide antigens. Clin Chem. 2007 Mar. 53(3):505-10. [Medline].

  66. Lim MT, Jeyarajah K, Jones P, Pandya H, Doffinger R, Kumararatne D, et al. Specific antibody deficiency in children with chronic wet cough. Arch Dis Child. May 2012. 97:478-80. [Medline].

  67. Rawat A, Suri D, Gupta A, Saikia B, Minz RW, Singh S. Isolated Immunoglobulin G4 Subclass Deficiency in a Child with Bronchiectasis. Indian J Pediatr. Oct 2013. Epub:[Medline].

  68. Ruuskanen O, Nurkka A, Helminen M, Viljanen MK, Käyhty H, Kainulainen L. Specific antibody deficiency in children with recurrent respiratory infections: a controlled study with follow-up. Clin Exp Immunol. May 2013. 172:238-44. [Medline].

  69. Wang N, Shen N, Vyse TJ, et al. Selective IgA deficiency in autoimmune diseases. Mol Med. 2011. 17(11-12):1383-96. [Medline]. [Full Text].

 
Previous
Next
 
Table. Immune Globulin, Intravenous [56, 57, 58, 59]
Brand(Manufacturer) Manufacturing Process pH Additives (IVIg products containing sucrose are most often associated with renal dysfunction, acute renal failure, and osmotic nephrosis, particularly with preexisting risk factors [eg, history of renal insufficiency, diabetes mellitus, age >65 y, dehydration, sepsis, paraproteinemia, nephrotoxic drugs]) Parenteral Form and Final Concentrations IgA Content mcg/mL
Carimune NF



(CSL Behring)



Kistler-Nitschmann fractionation; pH 4, nanofiltration 6.4-6.8 6% solution: 10% sucrose, < 20 mg NaCl/g protein Lyophilized powder 3%, 6%, 9%, 12% Trace
Flebogamma



(Grifols USA)



Cohn-Oncley fractionation, PEG precipitation, ion-exchange chromatography, pasteurization 5.1-6 Sucrose free, contains 5% D-sorbitol Liquid 5% < 50
Gammagard Liquid 10%



(Baxter Bioscience)



Cohn-Oncley cold ethanol fractionation, cation and anion exchange chromatography, solvent detergent treated, nanofiltration, low pH incubation 4.6-5.1 0.25M glycine Ready-for-use Liquid 10% 37
Gamunex



(Talecris Biotherapeutics)



Cohn-Oncley fractionation, caprylate-chromatography purification, cloth and depth filtration, low pH incubation 4-4.5 Does not contain carbohydrate stabilizers (eg, sucrose, maltose), contains glycine Liquid 10% 46
Gammaplex



(Bio Products)



Solvent/detergent treatment targeted to enveloped viruses; virus filtration using Pall Ultipor to remove small viruses including nonenveloped viruses; low pH incubation 4.8-5.1 Contains sorbitol (40 mg/mL); do not administer if fructose intolerant Ready-for-use solution 5% < 10
Iveegam EN



(Baxter Bioscience)



Cohn-Oncley fraction II/III; ultrafiltration; pasteurization 6.4-7.2 5% solution: 5% glucose, 0.3% NaCl Lyophilized powder 5% < 10
Polygam S/D



Gammagard S/D



(Baxter Bioscience for the American Red Cross)



Cohn-Oncley cold ethanol fractionation, followed by ultracentrafiltration and ion exchange chromatography; solvent detergent treated 6.4-7.2 5% solution: 0.3% albumin, 2.25% glycine, 2% glucose Lyophilized powder 5%, 10% < 1.6 (5% solution)
Octagam



(Octapharma USA)



9/24/10: Withdrawn from market because of unexplained reports of thromboembolic events



Cohn-Oncley fraction II/III; ultrafiltration; low pH incubation; S/D treatment pasteurization 5.1-6 10% maltose Liquid 5% 200
Panglobulin



(Swiss Red Cross for the American Red Cross)



Kistler-Nitschmann fractionation; pH 4 incubation, trace pepsin, nanofiltration 6.6 Per gram of IgG: 1.67 g sucrose, < 20 mg NaCl Lyophilized powder 3%, 6%, 9%, 12% 720
Privigen Liquid 10%



(CSL Behring)



Cold ethanol fractionation, octanoic acid fractionation, and anion exchange chromatography; pH 4 incubation and depth filtration 4.6-5 L-proline (approximately 250 mmol/L) as stabilizer; trace sodium; does not contain carbohydrate stabilizers (eg, sucrose, maltose) Ready-for use liquid 10% < 25
Previous
Next
 
 
 
 
 
All material on this website is protected by copyright, Copyright © 1994-2016 by WebMD LLC. This website also contains material copyrighted by 3rd parties.