Medscape is available in 5 Language Editions – Choose your Edition here.


IgA and IgG Subclass Deficiencies Treatment & Management

  • Author: Terry W Chin, MD, PhD; Chief Editor: Harumi Jyonouchi, MD  more...
Updated: Aug 15, 2014

Medical Care

As noted in Medication, even if the patient cannot produce specific antibodies, the decision to treat with intravenous immunoglobulin (IVIg) is controversial. Aggressive use of antibiotics is required for recurrent respiratory tract infections, such as sinusitis, asthma, and bronchitis.

The use of prophylactic antibiotics (eg, during the winter months) has not been well studied but can be considered. Cohort studies indicate that this approach can be successful.[50] If conventional initial intervention with antibiotics is not successful, a trial of IVIg at 400-600 mg/kg for 6 months may be considered. For partial deficiencies (ie, specific antibody deficiency), IVIg can be stopped if no clinical response is observed.

In IgG subclass deficiency, most clinicians reserve IVIg for patients unable to make antibodies to both protein and polysaccharide antigens. Although reports mention a possible beneficial effect of decreased duration of bacterial infection in patients with IgG subclass deficiency,[51] an unpublished, blinded, and randomized trial of IVIg in IgG subclass deficiency showed that IVIg was not effective. However, cohort studies indicate a benefit, especially in those patients with fewer responses to pneumococcal polysaccharide challenge.[31]

Some advocate using IVIg if a patient aged 3 years or older does not respond to the unconjugated vaccine, especially if the titer or quantity to any 1 serotype (eg, type 3 polysaccharide, the most immunogenic) does not increase 2-fold.

Patients with a decreased ability to make antipolysaccharide antibodies should be immunized with polysaccharide-protein conjugate vaccines, such as H influenzae type b (HIB) with diphtheria-tetanus. The conjugated protein allows anti-HIB antibodies to develop, though 2 or 3 doses are usually required.

A conjugated pneumococcal vaccine is now licensed for use in the United States. Conjugated meningococcal vaccine (Menactra) is also now yet available in the United States. Sorensen et al (1998) showed that a significant percentage of children with specific antibody deficiency develop protective antibody levels to the conjugated pneumococcal vaccine (Prevnar) with a subsequently decreased rate of infections.[52] Patients with isolated IgG3 subclass deficiency have a similar dilemma as to whether IVIg is helpful.[53]

OM-85 BV has been used in Europe for over 20 years to stimulate mucosa-associated lymphoid tissue and up-regulate the TH-1 response. One study did not find any increased induction of autoantibodies in IgA-deficient patients.[54] The authors did not comment on any beneficial effect in these patients. More specific therapy may become available if clinical studies on interleukin 21 confirm potential therapy in patients with common variable and selective IgA deficiencies.[55]

Aggressive treatment of underlying allergies and/or asthma may help reduce the frequency and/or severity of recurrent respiratory tract infections, such as sinusitis and bronchitis.

Conventionally treat associated autoimmune diseases. Nothing indicates that patients with a concomitant specific IgA deficiency do worse than those without any immunodeficiency.


Surgical Care

A few patients with chronic upper or lower respiratory infections and subsequent structural changes may need strategic, long-term, broad-spectrum antibiotics, in addition to chest physiotherapy and sinus surgery.

Although many patients benefit from the placement of tympanostomy tubes to manage recurrent otitis media and/or they might undergo endoscopic sinus surgery for chronic sinusitis, the importance of aggressive medical therapy for the underlying immunodeficiency and its accompanied allergic condition cannot be overemphasized.



Consultation with a surgeon may be needed for patients with chronic infections of the upper or lower respiratory tracts. Chronic sinusitis may require various ear, nose, and throat (ENT) procedures to promote drainage.

A rheumatologist, allergist/immunologist, or both may be required because of the various autoimmune and allergic diseases present with increased frequency in B-cell disorders.



Gluten-free and other restricted diets have been tried but are ineffective in these disorders when chronic diarrhea is present.



Encourage normal activity.

Contributor Information and Disclosures

Terry W Chin, MD, PhD Associate Clinical Professor, Department of Pediatrics, University of California, Irvine, School of Medicine; Associate Director, Cystic Fibrosis Center, Attending Staff Physician, Department of Pediatric Pulmonology, Allergy, and Immunology, Memorial Miller Children's Hospital

Terry W Chin, MD, PhD is a member of the following medical societies: American Academy of Allergy Asthma and Immunology, American Association of Immunologists, American College of Allergy, Asthma and Immunology, American College of Chest Physicians, American Federation for Clinical Research, American Thoracic Society, California Society of Allergy, Asthma and Immunology, California Thoracic Society, Clinical Immunology Society, Los Angeles Pediatric Society, Western Society for Pediatric Research

Disclosure: Nothing to disclose.

Specialty Editor Board

Mary L Windle, PharmD Adjunct Associate Professor, University of Nebraska Medical Center College of Pharmacy; Editor-in-Chief, Medscape Drug Reference

Disclosure: Nothing to disclose.

Chief Editor

Harumi Jyonouchi, MD Faculty, Division of Allergy/Immunology and Infectious Diseases, Department of Pediatrics, Saint Peter's University Hospital

Harumi Jyonouchi, MD is a member of the following medical societies: American Academy of Allergy Asthma and Immunology, American Academy of Pediatrics, American Association of Immunologists, American Medical Association, Clinical Immunology Society, New York Academy of Sciences, Society for Experimental Biology and Medicine, Society for Pediatric Research, Society for Mucosal Immunology

Disclosure: Nothing to disclose.


John Wilson Georgitis, MD Consulting Staff, Lafayette Allergy Services

John Wilson Georgitis, MD is a member of the following medical societies: American Academy of Allergy Asthma and Immunology, American Academy of Pediatrics, American Association for the Advancement of Science, American College of Chest Physicians, American Lung Association, American Medical Writers Association, and American Thoracic Society

Disclosure: Nothing to disclose.

  1. Gathmann B, Binder N, Ehl S, Kindle G. The European internet-based patient and research database for primary immunodeficiencies: update 2011. Clin Exp Immunol. 2012 Mar. 167(3):479-91. [Medline]. [Full Text].

  2. Plebani A, Ugazio AG, Meini A, et al. Extensive deletion of immunoglobulin heavy chain constant region genes in the absence of recurrent infections: when is IgG subclass deficiency clinically relevant?. Clin Immunol Immunopathol. 1993 Jul. 68(1):46-50. [Medline].

  3. Blutt SE, Miller AD, Salmon SL, Metzger DW, Conner ME. IgA is important for clearance and critical for protection from rotavirus infection. Mucosal Immunol. 2012 Jun 27. [Medline].

  4. Santaella ML, Peredo R, Disdier OM. IgA deficiency: clinical correlates with IgG subclass and mannan-binding lectin deficiencies. P R Health Sci J. 2005 Jun. 24(2):107-10. [Medline].

  5. Anantaphruti MT, Nuamtanong S, Dekumyoy P. Diagnostic values of IgG4 in human gnathostomiasis. Trop Med Int Health. 2005 Oct. 10(10):1013-21. [Medline].

  6. Constantin C, Huber WD, Granditsch G, et al. Different profiles of wheat antigens are recognised by patients suffering from coeliac disease and IgE-mediated food allergy. Int Arch Allergy Immunol. 2005 Nov. 138(3):257-66. [Medline].

  7. Palmer DS, O'Toole J, Montreuil T, et al. Screening of Canadian Blood Services donors for severe immunoglobulin A deficiency. Transfusion. 2010 Jul. 50(7):1524-31. [Medline].

  8. Weber-Mzell D, Kotanko P, Hauer AC, et al. Gender, age and seasonal effects on IgA deficiency: a study of 7293 Caucasians. Eur J Clin Invest. 2004 Mar. 34(3):224-8. [Medline].

  9. Aghamohammadi A, Cheraghi T, Gharagozlou M, et al. IgA deficiency: correlation between clinical and immunological phenotypes. J Clin Immunol. 2009 Jan. 29(1):130-6. [Medline].

  10. Aghamohammadi A, Mohammadi J, Parvaneh N, et al. Progression of selective IgA deficiency to common variable immunodeficiency. Int Arch Allergy Immunol. 2008. 147(2):87-92. [Medline].

  11. Priyadarsi A, Sankar J. H1N1 infection associated with persistent lower respiratory tract illness in an infant with isolated IgA deficiency. BMJ Case Rep. 2012 Feb 21. 2012:[Medline].

  12. Aytekin C, Tuygun N, Gokce S, Dogu F, Ikinciogullari A. Selective IgA Deficiency: Clinical and Laboratory Features of 118 Children in Turkey. J Clin Immunol. 2012 May 1. [Medline].

  13. Shkalim V, Monselize Y, Segal N, Zan-Bar I, Hoffer V, Garty BZ. Selective IgA deficiency in children in Israel. J Clin Immunol. 2010 Sep. 30(5):761-5. [Medline].

  14. Franco A, Parrella R, Murru F, et al. Lack of association between IgA deficiency and respiratory atopy in young male adults. In Vivo. 2011 Sep-Oct. 25(5):829-32. [Medline].

  15. Siriaksorn S, Suchaitanawanit S, Trakultivakorn M. Allergic rhinitis and immunoglobulin deficiency in preschool children with frequent upper respiratory illness. Asian Pac J Allergy Immunol. 2011 Mar. 29(1):73-7. [Medline].

  16. Janzi M, Kull I, Sjoberg R, et al. Selective IgA deficiency in early life: association to infections and allergic diseases during childhood. Clin Immunol. 2009 Oct. 133(1):78-85. [Medline].

  17. Gold PW, Pavlatou MG, Carlson PJ, et al. Unmedicated, remitted patients with major depression have decreased serum immunoglobulin A. Neurosci Lett. 2012 Jun 27. 520(1):1-5. [Medline].

  18. Feng ML, Zhao YL, Shen T, et al. Prevalence of immunoglobulin A deficiency in Chinese blood donors and evaluation of anaphylactic transfusion reaction risk. Transfus Med. 2011 Oct. 21(5):338-43. [Medline].

  19. Basturk B, Sari S, Aral A, Dalgic B. Prevalence of selective immunoglobulin A deficiency in healthy Turkish school children. Turk J Pediatr. 2011 Jul-Aug. 53(4):364-8. [Medline].

  20. Yel L. Selective IgA deficiency. J Clin Immunol. 2010 Jan. 30(1):10-6. [Medline]. [Full Text].

  21. Ramanujam R, Piehl F, Pirskanen R, Gregersen PK, Hammarstrom L. Concomitant autoimmunity in myasthenia gravis--lack of association with IgA deficiency. J Neuroimmunol. 2011 Jul. 236(1-2):118-22. [Medline]. [Full Text].

  22. Jorgensen GH, Ornolfsson AE, Johannesson A, et al. Association of immunoglobulin A deficiency and elevated thyrotropin-receptor autoantibodies in two Nordic countries. Hum Immunol. 2011 Feb. 72(2):166-72. [Medline].

  23. Chow MA, Lebwohl B, Reilly NR, Green PH. Immunoglobulin A Deficiency in Celiac Disease. J Clin Gastroenterol. 2012 Apr 2. [Medline].

  24. Carr TF, Koterba AP, Chandra R, et al. Characterization of specific antibody deficiency in adults with medically refractory chronic rhinosinusitis. Am J Rhinol Allergy. 2011 Jul-Aug. 25(4):241-4. [Medline]. [Full Text].

  25. Tuerlinckx D, Vermeulen F, Pekus V, et al. Optimal assessment of the ability of children with recurrent respiratory tract infections to produce anti-polysaccharide antibodies. Clin Exp Immunol. 2007 Aug. 149(2):295-302. [Medline]. [Full Text].

  26. Boyle RJ, Le C, Balloch A, Tang ML. The clinical syndrome of specific antibody deficiency in children. Clin Exp Immunol. 2006 Dec. 146(3):486-92. [Medline]. [Full Text].

  27. van Kessel DA, van Velzen-Blad H, van den Bosch JM, Rijkers GT. Impaired pneumococcal antibody response in bronchiectasis of unknown aetiology. Eur Respir J. 2005 Mar. 25(3):482-9. [Medline].

  28. Vendrell M, de Gracia J, Rodrigo MJ, et al. Antibody production deficiency with normal IgG levels in bronchiectasis of unknown etiology. Chest. 2005 Jan. 127(1):197-204. [Medline].

  29. Wiertsema SP, Veenhoven RH, Sanders EA, Rijkers GT. Immunologic screening of children with recurrent otitis media. Curr Allergy Asthma Rep. 2005 Jul. 5(4):302-7. [Medline].

  30. Cheng YK, Decker PA, O'Byrne MM, Weiler CR. Clinical and laboratory characteristics of 75 patients with specific polysaccharide antibody deficiency syndrome. Ann Allergy Asthma Immunol. 2006 Sep. 97(3):306-11. [Medline].

  31. Costa Carvalho BT, Nagao AT, Arslanian C, et al. Immunological evaluation of allergic respiratory children with recurrent sinusitis. Pediatr Allergy Immunol. 2005 Sep. 16(6):534-8. [Medline].

  32. Mrabet-Dahbi S, Breuer K, Klotz M, et al. Deficiency in immunoglobulin G2 antibodies against staphylococcal enterotoxin C1 defines a subgroup of patients with atopic dermatitis. Clin Exp Allergy. 2005 Mar. 35(3):274-81. [Medline].

  33. Gregorek H, Dzierzanowska-Fangrat K, Woynarowski M, Jozwiak P, Witkowska-Vogtt E, Socha J, et al. Persistence of HBV-DNA in children with chronic hepatitis B who seroconverted to anti-HBs antibodies after interferon-alpha therapy: correlation with specific IgG subclass responses to HBsAg. J Hepatol. 2005 Apr. 42(4):486-90. [Medline].

  34. de Laat PC, Weemaes CM, Bakkeren JA, et al. Familial selective IgA deficiency with circulating anti-IgA antibodies: a distinct group of patients?. Clin Immunol Immunopathol. 1991 Jan. 58(1):92-101. [Medline].

  35. Swedo SE, Leckman JF, Rose NR. (2012) From research subgroup to clinical syndrome: modifying the PANDAS criteria to describe PANS (pediatric acute-onset neuropsychiatric syndrome. Pediatr Therapeut. 2012. 2:2.

  36. Murphy TK, Storch EA, Lewin AB et al. (2012). Clinical factors associated with pediatric autoimmune neuropsychiatric disorders associated with streptococcal infections. J Pediatr. 2012. 160:314-9.

  37. Schaffer FM. Clinical assessment and management of abnormal IgA levels. Ann Allergy Asthma Immunol. 2008 Mar. 100(3):280-2. [Medline].

  38. Browning MJ. Specific polysaccharide antibody deficiency in chromosome 18p deletion syndrome and immunoglobulin A deficiency. J Investig Allergol Clin Immunol. 2010. 20(3):263-6. [Medline].

  39. Toptygina AP, Pukhalsky AL, Alioshkin VA. Immunoglobulin G subclass profile of antimeasles response in vaccinated children and in adults with measles history. Clin Diagn Lab Immunol. 2005 Jul. 12(7):845-7. [Medline]. [Full Text].

  40. Tanaka M, Seki G, Ishizawa K, wet al. Resolution of Henoch-Schönlein purpura nephritis after acquired IgA deficiency. Pediatr Nephrol. 2010 Nov. 25(11):2355-8. [Medline].

  41. Paris K, Sorensen RU. Assessment and clinical interpretation of polysaccharide antibody responses. Ann Allergy Asthma Immunol. 2007 Nov. 99(5):462-4. [Medline].

  42. Freeman JA, Crassini KR, Best OG, et al. Immunoglobulin G (IgG) subclass deficiency and infection risk in 150 patients with chronic lymphocytic leukaemia. Leuk Lymphoma. 2012 Jun 27. [Medline].

  43. Shakkottai A, Bupathi K, Patel AP, et al. Children with partial IgA deficiency: clinical characteristics observed in the pediatric rheumatology clinic. Clin Pediatr (Phila). 2012 Jan. 51(1):46-50. [Medline].

  44. Fusaro AE, Fahl K, Cardoso EC, et al. Profile of autoantibodies against phosphorylcholine and cross-reactivity to oxidation-specific neoantigens in selective IgA deficiency with or without autoimmune diseases. J Clin Immunol. 2010 Nov. 30(6):872-80. [Medline].

  45. Rezaei N, Aghamohammadi A, Siadat SD, et al. Serum bactericidal antibody response to serogroup C polysaccharide meningococcal vaccination in children with primary antibody deficiencies. Vaccine. 2007 Jul 20. 25(29):5308-14. [Medline].

  46. Kamchaisatian W, Wanwatsuntikul W, Sleasman JW, Tangsinmankong N. Validation of current joint American Academy of Allergy, Asthma & Immunology and American College of Allergy, Asthma and Immunology guidelines for antibody response to the 23-valent pneumococcal vaccine using a population of HIV-infected children. J Allergy Clin Immunol. 2006 Dec. 118(6):1336-41. [Medline].

  47. Garside JP, Kerrin DP, Brownlee KG, Gooi HC, Taylor JM, Conway SP. Immunoglobulin and IgG subclass levels in a regional pediatric cystic fibrosis clinic. Pediatr Pulmonol. 2005 Feb. 39(2):135-40. [Medline].

  48. Ozkan H, Atlihan F, Genel F, Targan S, Gunvar T. IgA and/or IgG subclass deficiency in children with recurrent respiratory infections and its relationship with chronic pulmonary damage. J Investig Allergol Clin Immunol. 2005. 15(1):69-74. [Medline].

  49. Kutukculer N, Karaca NE, Demircioglu O, Aksu G. Increases in serum immunoglobulins to age-related normal levels in children with IgA and/or IgG subclass deficiency. Pediatr Allergy Immunol. 2007 Mar. 18(2):167-73. [Medline].

  50. Cohn JA, Skorpinski E, Cohn JR. Prevention of pneumococcal infection in a patient with normal immunoglobulin levels but impaired polysaccharide antibody production. Ann Allergy Asthma Immunol. 2006 Nov. 97(5):603-5. [Medline].

  51. Sorensen RU, Leiva LE, Giangrosso PA, et al. Response to a heptavalent conjugate Streptococcus pneumoniae vaccine in children with recurrent infections who are unresponsive to the polysaccharide vaccine. Pediatr Infect Dis J. 1998 Aug. 17(8):685-91. [Medline].

  52. Meyts I, Bossuyt X, Proesmans M, De B. Isolated IgG3 deficiency in children: to treat or not to treat? Case presentation and review of the literature. Pediatr Allergy Immunol. 2006 Nov. 17(7):544-50. [Medline].

  53. Garcia-Lloret M, McGhee S, Chatila TA. Immunoglobulin replacement therapy in children. Immunol Allergy Clin North Am. 2008 Nov. 28(4):833-49, ix. [Medline]. [Full Text].

  54. Karaca NE, Gulez N, Aksu G, Azarsiz E, Kutukculer N. Does OM-85 BV prophylaxis trigger autoimmunity in IgA deficient children?. Int Immunopharmacol. 2011 Nov. 11(11):1747-51. [Medline].

  55. Borte S, Pan-Hammarstrom Q, Liu C, et al. Interleukin-21 restores immunoglobulin production ex vivo in patients with common variable immunodeficiency and selective IgA deficiency. Blood. 2009 Nov 5. 114(19):4089-98. [Medline].

  56. Hooper JA. Intravenous immunoglobulins: evolution of commercial IVIG preparations. Immunol Allergy Clin North Am. 2008 Nov. 28(4):765-78, viii. [Medline].

  57. Siegel J. The product: All intravenous immunoglobulins are not equivalent. Pharmacotherapy. 2005 Nov. 25(11 Pt 2):78S-84S. [Medline].

  58. Shah S. Pharmacy considerations for the use of IGIV therapy. Am J Health Syst Pharm. 2005 Aug 15. 62(16 Suppl 3):S5-11. [Medline].

  59. Sorensen RU, Leiva LE, Javier FC 3rd, et al. Influence of age on the response to Streptococcus pneumoniae vaccine in patients with recurrent infections and normal immunoglobulin concentrations. J Allergy Clin Immunol. 1998 Aug. 102(2):215-21. [Medline].

  60. Lawton AR. IgG subclass deficiency and the day-care generation. Pediatr Infect Dis J. 1999 May. 18(5):462-6. [Medline].

  61. Wolpert J, Knutsen AP. Natural history of selective antibody deficiency to bacterial polysaccharide antigens in children. Pediatr Asthma Allergy Immunol. 1998. 12:183-91.

  62. Papadopoulou A, Mermiri D, Taousani S, Triga M, Nicolaidou P, Priftis KN. Bronchial hyper-responsiveness in selective IgA deficiency. Pediatr Allergy Immunol. 2005 Sep. 16(6):495-500. [Medline].

  63. Abrahamian F, Agrawal S, Gupta S. Immunological and clinical profile of adult patients with selective immunoglobulin subclass deficiency: response to intravenous immunoglobulin therapy. Clin Exp Immunol. Mar 2010. 159:344-50. [Medline].

  64. Cunningham-Rundles C, Brandeis WE, Pudifin DJ, Day NK, Good RA. Autoimmunity in selective IgA deficiency: relationship to anti-bovine protein antibodies, circulating immune complexes and clinical disease. Clin Exp Immunol. 1981 Aug. 45(2):299-304. [Medline]. [Full Text].

  65. Jeurissen A, Moens L, Raes M, et al. Laboratory diagnosis of specific antibody deficiency to pneumococcal capsular polysaccharide antigens. Clin Chem. 2007 Mar. 53(3):505-10. [Medline].

  66. Lim MT, Jeyarajah K, Jones P, Pandya H, Doffinger R, Kumararatne D, et al. Specific antibody deficiency in children with chronic wet cough. Arch Dis Child. May 2012. 97:478-80. [Medline].

  67. Rawat A, Suri D, Gupta A, Saikia B, Minz RW, Singh S. Isolated Immunoglobulin G4 Subclass Deficiency in a Child with Bronchiectasis. Indian J Pediatr. Oct 2013. Epub:[Medline].

  68. Ruuskanen O, Nurkka A, Helminen M, Viljanen MK, Käyhty H, Kainulainen L. Specific antibody deficiency in children with recurrent respiratory infections: a controlled study with follow-up. Clin Exp Immunol. May 2013. 172:238-44. [Medline].

  69. Wang N, Shen N, Vyse TJ, et al. Selective IgA deficiency in autoimmune diseases. Mol Med. 2011. 17(11-12):1383-96. [Medline]. [Full Text].

Table. Immune Globulin, Intravenous [56, 57, 58, 59]
Brand(Manufacturer) Manufacturing Process pH Additives (IVIg products containing sucrose are most often associated with renal dysfunction, acute renal failure, and osmotic nephrosis, particularly with preexisting risk factors [eg, history of renal insufficiency, diabetes mellitus, age >65 y, dehydration, sepsis, paraproteinemia, nephrotoxic drugs]) Parenteral Form and Final Concentrations IgA Content mcg/mL
Carimune NF

(CSL Behring)

Kistler-Nitschmann fractionation; pH 4, nanofiltration 6.4-6.8 6% solution: 10% sucrose, < 20 mg NaCl/g protein Lyophilized powder 3%, 6%, 9%, 12% Trace

(Grifols USA)

Cohn-Oncley fractionation, PEG precipitation, ion-exchange chromatography, pasteurization 5.1-6 Sucrose free, contains 5% D-sorbitol Liquid 5% < 50
Gammagard Liquid 10%

(Baxter Bioscience)

Cohn-Oncley cold ethanol fractionation, cation and anion exchange chromatography, solvent detergent treated, nanofiltration, low pH incubation 4.6-5.1 0.25M glycine Ready-for-use Liquid 10% 37

(Talecris Biotherapeutics)

Cohn-Oncley fractionation, caprylate-chromatography purification, cloth and depth filtration, low pH incubation 4-4.5 Does not contain carbohydrate stabilizers (eg, sucrose, maltose), contains glycine Liquid 10% 46

(Bio Products)

Solvent/detergent treatment targeted to enveloped viruses; virus filtration using Pall Ultipor to remove small viruses including nonenveloped viruses; low pH incubation 4.8-5.1 Contains sorbitol (40 mg/mL); do not administer if fructose intolerant Ready-for-use solution 5% < 10
Iveegam EN

(Baxter Bioscience)

Cohn-Oncley fraction II/III; ultrafiltration; pasteurization 6.4-7.2 5% solution: 5% glucose, 0.3% NaCl Lyophilized powder 5% < 10
Polygam S/D

Gammagard S/D

(Baxter Bioscience for the American Red Cross)

Cohn-Oncley cold ethanol fractionation, followed by ultracentrafiltration and ion exchange chromatography; solvent detergent treated 6.4-7.2 5% solution: 0.3% albumin, 2.25% glycine, 2% glucose Lyophilized powder 5%, 10% < 1.6 (5% solution)

(Octapharma USA)

9/24/10: Withdrawn from market because of unexplained reports of thromboembolic events

Cohn-Oncley fraction II/III; ultrafiltration; low pH incubation; S/D treatment pasteurization 5.1-6 10% maltose Liquid 5% 200

(Swiss Red Cross for the American Red Cross)

Kistler-Nitschmann fractionation; pH 4 incubation, trace pepsin, nanofiltration 6.6 Per gram of IgG: 1.67 g sucrose, < 20 mg NaCl Lyophilized powder 3%, 6%, 9%, 12% 720
Privigen Liquid 10%

(CSL Behring)

Cold ethanol fractionation, octanoic acid fractionation, and anion exchange chromatography; pH 4 incubation and depth filtration 4.6-5 L-proline (approximately 250 mmol/L) as stabilizer; trace sodium; does not contain carbohydrate stabilizers (eg, sucrose, maltose) Ready-for use liquid 10% < 25
All material on this website is protected by copyright, Copyright © 1994-2016 by WebMD LLC. This website also contains material copyrighted by 3rd parties.