Close
New

Medscape is available in 5 Language Editions – Choose your Edition here.

 

B-Cell and T-Cell Combined Disorders Follow-up

  • Author: Terry W Chin, MD, PhD; Chief Editor: Harumi Jyonouchi, MD  more...
 
Updated: Aug 26, 2014
 

Prognosis

Because the underlying immunodeficiency in patients with ataxia-telangiectasia (AT) widely varies, overall prognosis can vary. Approximately 10-15% develop malignancy in childhood, usually lymphoid tumors. However, other tumors, including brain tumors and certain carcinomas have also been seen in patients with AT. The role of ATM mutations in breast cancer is currently under intense investigation.[22] Similarly, the degree and extent of any associated autoimmune endocrinopathies in patients with chronic mucocutaneous candidiasis (CMC) widely varies and affects the prognosis.

Early detection of malignancy and aggressive treatment for sinopulmonary infections prolong survival. In AT, their chronic lung disease appear to be primarily interstitial and responsive only to systemic corticosteroids given early in the course. One case report detailed improvement of neurologic symptoms with systemic corticosteroids.[23]

The use of the conjugated pneumococcal vaccine may be of benefit because infections with Streptococcus pneumoniae is common. Some patients may benefit from intravenous immunoglobulin (IVIG). Some patients survive into adulthood. A 31-year-old individual is the oldest reported patient.

The median survival in two large cohorts of patients with AT is age 25 and 19 years, with a wide range. Life expectancy does not correlate well with severity of neurologic impairment.[24]

In CMC, survival into adulthood is common. However, early detection of associated endocrinopathies is critical. In addition, aggressive treatment for lower respiratory tract infections prevents morbidity due to the development of chronic lung disease. CMC has been associated with squamous cell carcinoma of the oral cavity or esophagus; endoscopic screening has been suggested for patients that develop symptoms of esophageal candidiasis and in those with a positive family history.[7]

Delayed diagnosis of AT or CMC may compromise the patient and family member care. Early diagnosis of AT alerts the physician to a possible immunodeficiency and the need to limit patients' exposure to ultraviolet light and diagnostic radiographs. Similarly, early diagnosis of CMC indicates the need to use effective antifungal medications and monitor for autoimmune disorders. Early diagnosis also provides an opportunity for requisite genetic counseling because of the genetic component of the disease.

Some recommend routinely testing serum alpha-fetoprotein (AFP) levels in all toddlers and children with undiagnosed chronic or progressive ataxia. CMC should be considered in any patient with persistent candidal infection.

Next

Patient Education

Families may benefit from social support organizations, such as the Immune Deficiency Foundation.

Previous
 
Contributor Information and Disclosures
Author

Terry W Chin, MD, PhD Associate Clinical Professor, Department of Pediatrics, University of California, Irvine, School of Medicine; Associate Director, Cystic Fibrosis Center, Attending Staff Physician, Department of Pediatric Pulmonology, Allergy, and Immunology, Memorial Miller Children's Hospital

Terry W Chin, MD, PhD is a member of the following medical societies: American Academy of Allergy Asthma and Immunology, American Association of Immunologists, American College of Allergy, Asthma and Immunology, American College of Chest Physicians, American Federation for Clinical Research, American Thoracic Society, California Society of Allergy, Asthma and Immunology, California Thoracic Society, Clinical Immunology Society, Los Angeles Pediatric Society, Western Society for Pediatric Research

Disclosure: Nothing to disclose.

Coauthor(s)

Noufa Alonazi, MD, MBBS Allergy and Immunology Postdoctoral Fellow, Department of Pediatrics, Loma Linda University and Medical Center

Disclosure: Nothing to disclose.

Specialty Editor Board

Mary L Windle, PharmD Adjunct Associate Professor, University of Nebraska Medical Center College of Pharmacy; Editor-in-Chief, Medscape Drug Reference

Disclosure: Nothing to disclose.

Chief Editor

Harumi Jyonouchi, MD Faculty, Division of Allergy/Immunology and Infectious Diseases, Department of Pediatrics, Saint Peter's University Hospital

Harumi Jyonouchi, MD is a member of the following medical societies: American Academy of Allergy Asthma and Immunology, American Academy of Pediatrics, American Association of Immunologists, American Medical Association, Clinical Immunology Society, New York Academy of Sciences, Society for Experimental Biology and Medicine, Society for Pediatric Research, Society for Mucosal Immunology

Disclosure: Nothing to disclose.

Acknowledgements

John Wilson Georgitis, MD Consulting Staff, Lafayette Allergy Services

John Wilson Georgitis, MD is a member of the following medical societies: American Academy of Allergy Asthma and Immunology, American Academy of Pediatrics, American Association for the Advancement of Science, American College of Chest Physicians, American Lung Association, American Medical Writers Association, and American Thoracic Society

Disclosure: Nothing to disclose.

References
  1. Somech R, Lev A, Grisaru-Soen G, Shiran SI, Simon AJ, Grunebaum E. Purine nucleoside phosphorylase deficiency presenting as severe combined immune deficiency. Immunol Res. 2013 May. 56(1):150-4. [Medline].

  2. Moraes-Vasconcelos D, Costa-Carvalho BT, Torgerson TR, Ochs HD. Primary immune deficiency disorders presenting as autoimmune diseases: IPEX and APECED. J Clin Immunol. 2008 May. 28 Suppl 1:S11-9. [Medline].

  3. Stiehm ER. Immunologic Disorders in Infants and Children. 4th ed. WB Saunders Co; 1996.

  4. Kwan A, Abraham RS, Currier R, Brower A, Andruszewski K, Abbott JK, et al. Newborn screening for severe combined immunodeficiency in 11 screening programs in the United States. JAMA. 2014 Aug 20. 312(7):729-38. [Medline].

  5. Perheentupa J. Autoimmune polyendocrinopathy-candidiasis-ectodermal dystrophy. J Clin Endocrinol Metab. 2006 Aug. 91(8):2843-50. [Medline].

  6. Cabana MD, Crawford TO, Winkelstein JA, Christensen JR, Lederman HM. Consequences of the delayed diagnosis of ataxia-telangiectasia. Pediatrics. 1998 Jul. 102(1 Pt 1):98-100. [Medline].

  7. Rosa DD, Pasqualotto AC, Denning DW. Chronic mucocutaneous candidiasis and oesophageal cancer. Med Mycol. 2008 Feb. 46(1):85-91. [Medline].

  8. LeBoeuf N, Garg A, Worobec S. The autoimmune polyendocrinopathy-candidiasis-ectodermal dystrophy syndrome. Pediatr Dermatol. 2007 Sep-Oct. 24(5):529-33. [Medline].

  9. Hong M, Ryan KR, Arkwright PD, et al. Pattern recognition receptor expression is not impaired in patients with chronic mucocutanous candidiasis with or without autoimmune polyendocrinopathy candidiasis ectodermal dystrophy. Clin Exp Immunol. 2009 Apr. 156(1):40-51. [Medline]. [Full Text].

  10. Eyerich K, Foerster S, Rombold S, et al. Patients with chronic mucocutaneous candidiasis exhibit reduced production of Th17-associated cytokines IL-17 and IL-22. J Invest Dermatol. 2008 Nov. 128(11):2640-5. [Medline].

  11. Stray-Pedersen A, Aaberge IS, Fruh A, Abrahamsen TG. Pneumococcal conjugate vaccine followed by pneumococcal polysaccharide vaccine; immunogenicity in patients with ataxia-telangiectasia. Clin Exp Immunol. 2005 Jun. 140(3):507-16. [Medline].

  12. Pashankar F, Singhal V, Akabogu I, Gatti RA, Goldman FD. Intact T cell responses in ataxia telangiectasia. Clin Immunol. 2006 Aug. 120(2):156-62. [Medline].

  13. Meloni A, Furcas M, Cetani F, et al. Autoantibodies against type I interferons as an additional diagnostic criterion for autoimmune polyendocrine syndrome type I. J Clin Endocrinol Metab. 2008 Nov. 93(11):4389-97. [Medline].

  14. Meager A, Visvalingam K, Peterson P, et al. Anti-interferon autoantibodies in autoimmune polyendocrinopathy syndrome type 1. PLoS Med. 2006 Jul. 3(7):e289. [Medline].

  15. Pai SY, Logan BR, Griffith LM, Buckley RH, Parrott RE, Dvorak CC, et al. Transplantation outcomes for severe combined immunodeficiency, 2000-2009. N Engl J Med. 2014 Jul 31. 371(5):434-46. [Medline].

  16. Kalfa VC, Roberts RL, Stiehm ER. The syndrome of chronic mucocutaneous candidiasis with selective antibody deficiency. Ann Allergy Asthma Immunol. 2003 Feb. 90(2):259-64. [Medline].

  17. Lacy CF, Armstrong LL, Goldman MP, Lance LL, eds. Drug Information Handbook 2008-2009. 16th edition. Cleveland, Ohio: Lexi-Comp Inc; 2008.

  18. Hooper JA. Intravenous immunoglobulins: evolution of commercial IVIG preparations. Immunol Allergy Clin North Am. 2008 Nov. 28(4):765-78, viii. [Medline].

  19. Shah S. Pharmacy considerations for the use of IGIV therapy. Am J Health Syst Pharm. 2005 Aug 15. 62(16 Suppl 3):S5-11. [Medline].

  20. Siegel J. The Product: All intravenous immunoglobulins are not equivalent. Pharmacother. 2005. 25(11 Pt 2):78S-84S.

  21. Stiehm ER, Casillas AM, Finkelstein JZ, et al. Slow subcutaneous human intravenous immunoglobulin in the treatment of antibody immunodeficiency: use of an old method with a new product. J Allergy Clin Immunol. 1998 Jun. 101(6 Pt 1):848-9. [Medline].

  22. Renwick A, Thompson D, Seal S, et al. ATM mutations that cause ataxia-telangiectasia are breast cancer susceptibility alleles. Nat Genet. 2006 Aug. 38(8):873-5. [Medline].

  23. Buoni S, Zannolli R, Sorrentino L, Fois A. Betamethasone and improvement of neurological symptoms in ataxia-telangiectasia. Arch Neurol. 2006 Oct. 63(10):1479-82. [Medline].

  24. Crawford TO, Skolasky RL, Fernandez R, Rosquist KJ, Lederman HM. Survival probability in ataxia telangiectasia. Arch Dis Child. 2006 Jul. 91(7):610-1. [Medline].

  25. Baumgart KW, Britton WJ, Kemp A, French M, Roberton D. The spectrum of primary immunodeficiency disorders in Australia. J Allergy Clin Immunol. 1997 Sep. 100(3):415-23. [Medline].

  26. Claret Teruel G, Giner Munoz MT, Plaza Martin AM, et al. Variability of immunodeficiency associated with ataxia telangiectasia and clinical evolution in 12 affected patients. Pediatr Allergy Immunol. 2005 Nov. 16(7):615-8. [Medline].

  27. Hughes WT. Prevention of infections in patients with T cell defects. Clin Infect Dis. 1993 Nov. 17 Suppl 2:S368-71. [Medline].

  28. Mila J, Matamoros N, Pons de Ves J, Raga S, Iglesias Alzueta J. [The Spanish Registry of Primary Immunodeficiencies. REDIP-1998]. Sangre (Barc). 1999 Apr. 44(2):163-7. [Medline].

  29. Regueiro JR, Porras O, Lavin M. Ataxia-telangiectasia: a primary immunodeficiency revisted. Immunol Allergy Clin North Am. 2000. 20:177-206.

  30. Ruan QG, She JX. Autoimmune polyglandular syndrome type 1 and the autoimmune regulator. Clin Lab Med. 2004 Mar. 24(1):305-17. [Medline].

  31. Sadighi Akha AA, Humphrey RL, Winkelstein JA, Loeb DM, Lederman HM. Oligo-/monoclonal gammopathy and hypergammaglobulinemia in ataxia-telangiectasia. A study of 90 patients. Medicine (Baltimore). 1999 Nov. 78(6):370-81. [Medline].

  32. Sahama I. Radiological Imaging in Ataxia Telangiectasia: a Review. Cerebellum. 2014.

  33. Schroeder SA, Swift M, Sandoval C, Langston C. Interstitial lung disease in patients with ataxia-telangiectasia. Pediatr Pulmonol. 2005 Jun. 39(6):537-43. [Medline].

  34. Schwartz SA. Intravenous immunoglobulin treatment of immunodeficiency disorders. Pediatr Clin North Am. 2000 Dec. 47(6):1355-69. [Medline].

  35. Taylor AM, Byrd PJ. Molecular pathology of ataxia telangiectasia. J Clin Pathol. 2005 Oct. 58(10):1009-15. [Medline].

  36. Thampakkul S, Ballow M. Replacement intravenous immunoglobulin. Serum globulin therapy in patients with antibody immune deficiency. Immunol Aller Clin North Am. 2001. 21:165.

 
Previous
Next
 
Telangiectasia.
Radiograph shows an 8-month-old boy who required ventilatory support for bilateral pneumonia and who received intravenous antibiotics. The patient recovered and returned home.
Chest radiograph in an 8-month-old boy 2 weeks after he was treated for bilateral pneumonia. The patient returned to the emergency department with a fever and breathing problems.
Chest radiograph in a 9-month-old boy. The patient developed breathing problems 1 month after recovering from a second hospitalization for pneumonia. By this time, serum immunoglobulin levels from the second hospitalization were in the patient's record and showed an immunoglobulin G level of 156 mg/dL and undetectable immunoglobulin A and immunoglobulin M levels. Subsequent bronchoscopy showed the presence of Pneumocystis carinii and cytomegalovirus.
Telangiectasia of conjunctivae.
A 5-year-old boy with thrush.
Table. Intravenous Immunoglobulin Therapy [17, 18, 19, 20]
Brand(Manufacturer) Manufacturing Process pH Additives (IVIG products containing sucrose are more often associated with renal dysfunction, acute renal failure, and osmotic nephrosis, particularly with preexisting risk factors [eg, history of renal insufficiency, diabetes mellitus, age >65 y, dehydration, sepsis, paraproteinemia, nephrotoxic drugs].) Parenteral Form and Final Concentrations IgA Content mcg/mL
Carimune NF



(ZLB Behring)



Kistler-Nitschmann fractionation, pH 4, nanofiltration 6.4-6.8 6% solution: 10% sucrose, < 20 mg NaCl/g protein Lyophilized powder 3%, 6%, 9%, 12% Trace
Flebogamma



(Grifols USA)



Cohn-Oncley fractionation, PEG precipitation, ion-exchange chromatography, pasteurization 5.1-6 Sucrose free, contains 5% D-sorbitol Liquid 5% < 50
Gammagard Liquid 10%



(Baxter Bioscience)



Cohn-Oncley cold ethanol fractionation, cation and anion exchange chromatography, solvent detergent treated, nanofiltration, low pH incubation 4.6-5.1 0.25 M glycine Ready-for-use liquid 10% 37
Gammar-P IV



(ZLB Behring)



Cohn-Oncley fraction II/III, ultrafiltration, pasteurization 6.4-7.2 5% solution: 5% sucrose, 3% albumin, 0.5% NaCl Lyophilized powder 5% < 20
Gamunex



(Talecris Biotherapeutics)



Cohn-Oncley fractionation, caprylate-chromatography purification, cloth and depth filtration, low pH incubation 4-4.5 Contains no sugar, contains glycine Liquid 10% 46
Gammaplex



(Bio Products)



Solvent/detergent treatment targeted to enveloped viruses; virus filtration using Pall Ultipor to remove small viruses including nonenveloped viruses; low pH incubation 4.8-5.1 Contains sorbitol (40 mg/mL); do not administer if fructose intolerant Ready-for-use solution 5% < 10
Iveegam EN



(Baxter Bioscience)



Cohn-Oncley fraction II/III, ultrafiltration, pasteurization 6.4-7.2 5% solution: 5% glucose, 0.3% NaCl Lyophilized powder 5% < 10
Polygam S/D



Gammagard S/D



(Baxter Bioscience for the American Red Cross)



Cohn-Oncley cold ethanol fractionation, followed by ultra centrafiltration and ion exchange chromatography, solvent detergent treated 6.4-7.2 5% solution: 0.3% albumin, 2.25% glycine, 2% glucose Lyophilized powder 5%, 10% < 1.6 (5% solution)
Octagam



(Octapharma USA)



9/24/10: Withdrawn from market because of unexplained reports of thromboembolic events



Cohn-Oncley fraction II/III, ultrafiltration, low pH incubation, S/D treatment pasteurization 5.1-6 10% maltose Liquid 5% 200
Panglobulin



(Swiss Red Cross for the American Red Cross)



Kistler-Nitschmann fractionation, pH 4, trace pepsin, nanofiltration 6.6 Per gram of IgG: 1.67 g sucrose, < 20 mg NaCl Lyophilized powder 3%, 6%, 9%, 12% 720
Previous
Next
 
 
 
 
 
All material on this website is protected by copyright, Copyright © 1994-2016 by WebMD LLC. This website also contains material copyrighted by 3rd parties.