Close
New

Medscape is available in 5 Language Editions – Choose your Edition here.

 

Pediatric Bruton Agammaglobulinemia Medication

  • Author: Terry W Chin, MD, PhD; Chief Editor: Harumi Jyonouchi, MD  more...
 
Updated: May 07, 2014
 

Medication Summary

The overall consensus among clinical immunologists regarding replacement therapy with IVIG in patients with primary immune deficiencies is that an IVIG dose of 400-600 mg/kg/mo or a dose that maintains trough serum IgG levels greater than 500 mg/dL is desirable. The number and severity of infectious complications is inversely correlated with the dose of IVIG administered. A recent consensus statement suggests that maintaining trough IgG levels greater than 800 mg/dL prevents serious bacterial illness and enteroviral meningoencephalitis.[50] However, if infections continue to be a problem, increasing the trough level up to 1000 mg/dL is an option.[51]

Measure of preinfusion (trough) serum IgG levels every 3 months until a steady state is achieved and then every 6 months if the patient is stable. It may be helpful in adjusting the dose of IVIG to achieve adequate serum levels. For persons who have a high catabolism of infused IgG, more frequent infusions (eg, every 2-3 wk) of smaller doses may maintain the serum level in the reference range. The rate of elimination of IVIG may be higher during a period of active infection; measuring serum IgG levels and adjusting to higher dosages or shorter intervals may be required.

SCIG administration is also possible.[52] The recommended dose is 100-200 mg/kg SC every week. The initial weekly SC dose can be calculated by multiplying the previous IVIG dose by 1.37 and then dividing that dose into weekly doses, based on the patient's previous IVIG treatment interval. For example, if IVIG dosage is 200 mg/kg every 3 weeks, multiply 200 mg/kg by 1.37 and then divide by 3 to get a calculated dose of 91 mg/kg SC every week. The calculated SCIG dose provides systemic exposure similar to that of the previous IVIG dose. SCIG dose should be initiated 1 week after the last IVIG dose. For SCIG administration, do not exceed 15 mL (3200 mg) per injection site, and the administration rate is not to exceed 20 mL/h per injection site. In a review of seven studies on SCIG, the incidence of infection was found to be inversely related to the trough serum IgG level.[53] Therefore, maintaining higher IgG levels may be beneficial but no given level was found to be adequate for all patients.

Recently, a cost comparison analysis was made in France between SCIG and IVIG.[54] It appeared that SCIG appeared to be 25% less expensive.

Preinfusion (trough) serum IgG levels are measured every 3 months until a steady state is achieved and then every 6 months if the patient is stable. These measurements may be helpful in adjusting the dose of IVIG or SCIG to achieve adequate serum levels. For persons in whom the catabolism of infused IgG is high, more frequent (eg, every 2-3 wk) IV infusions of smaller doses may maintain the serum level within the reference range. The rate of elimination of IgG may be higher during a period of active infection. Therefore, serum IgG levels may need to be measured more frequently, doses may need to be increased, or shorter intervals may be required.

For replacement therapy in patients with primary immune deficiency, all brands of IVIG are probably equivalent, although viral inactivation processes (eg, solvent detergent vs pasteurization and liquid vs lyophilized) differ. The choice of brand may depend on the hospital or home care formulary and on local availability and cost. In addition, whether home SCIG administration is appropriate must be determined. In patients who have IV access problems or who develop adverse effects with IVIG administration (eg, headache, myalgias), SCIG is an alternative. Questions regarding compliance need to be answered. The requirement of weekly infusions and local reactions at the site of infusions are disadvantages.

In addition, contraindications include patients with thrombocytopenia or other bleeding disorders and patients who are receiving anticoagulant therapy. SCIG was shown to be equal in efficacy to the same dose administered IV. The dose, manufacturer, and lot number should be recorded for each infusion to facilitate review for adverse events or other consequences. Recording of all adverse effects that occur during the infusion is crucial.

Periodic liver and renal function testing, approximately 3-4 times yearly, is also recommended. The US Food and Drug Administration (FDA) advises that, in patients at risk for renal failure, the recommended doses should not be exceeded and that infusion rates and concentrations should be at the practicable minimum levels. Examples of patients at risk for renal failure include patients older than 65 years; patients who use nephrotoxic drugs; and patients with preexisting renal insufficiency, diabetes mellitus, volume depletion, sepsis, or paraproteinemia.

The initial treatment should be administered under the close supervision of experienced personnel. The risk of adverse reactions in the initial treatments is high, especially in patients with infections and in those in whom immune complexes form. In patients with active infection, infusion rates may need to be slower, and the dose may need to be halved (ie, to 200-300 mg/kg). The remaining half should be administered the next day to achieve a full dose. Treatment should not be discontinued. After normal serum IgG levels are achieved, adverse reactions are uncommon unless patients have active infections.

With the new generation of IVIG products, adverse effects are reduced. Adverse effects include tachycardia, chest tightness, back pain, arthralgia, myalgia, hypertension or hypotension, headache, pruritus, rash, and low-grade fever. More serious reactions include dyspnea, nausea, vomiting, circulatory collapse, and loss of consciousness. Patients with more profound immunodeficiency and patients with active infections have more severe reactions.

The activation of complement due to IgG aggregates in the IVIG and the formation of immune complexes are thought to be related to the adverse reactions. The formation of oligomeric or polymeric IgG complexes that interact with crystallizable fragment (Fc) receptors and that trigger the release of inflammatory mediators is a cause. Most adverse reactions are rate related. Slowing the infusion rate or discontinuing therapy until symptoms subside may diminish the reaction. Pretreatment with ibuprofen (5-10 mg/kg every 6-8 h), acetaminophen (15 mg/kg/dose; not to exceed 1000 mg/dose or 2.6 g/24 h if age < 12 y), diphenhydramine (1 mg/kg/dose; not to exceed 50 mg/dose), and/or hydrocortisone (6 mg/kg/dose; not to exceed 100 mg/dose) 1 hour before the infusion may prevent adverse reactions. In some patients with a history of severe adverse effects, therapy with analgesics and antihistamines may be repeated.

Acute renal failure is a rare but significant complication of IVIG treatment. Reports suggest that IVIG products with sucrose as a stabilizer may be associated with a greater risk for this renal complication. Acute tubular necrosis, vacuolar degeneration, and osmotic nephrosis suggest osmotic injury to the proximal renal tubules. The infusion rate for sucrose-containing IVIG should not exceed 3 mg/kg/min based on the amount of sucrose. Risk factors for this adverse reaction include preexisting renal insufficiency, diabetes mellitus, dehydration, age older than 65 years, sepsis, paraproteinemia, and concomitant use of nephrotoxic agents. For patients at increased risk, monitoring the BUN and creatinine levels before starting the treatment and prior to each infusion is necessary. If the patient's renal function deteriorates, the treatment should be discontinued.

IgE antibodies to IgA have rarely been reported to cause severe transfusion reactions in patients with IgA deficiency. A few cases of true anaphylaxis have been reported in patients with selective IgA deficiency and CVID who developed IgE antibodies to IgA after treatment with Ig. However, this is rare in actual experience. In addition, this is not a problem in patients with XLA or in patients with SCID. Caution should be exercised in patients with IgA deficiency (< 7 mg/dL) who need IVIG. (IgA levels can be low in patients with selective IgA deficiency, in patients with CVID, and in some patients with IgG-subclass deficiencies.) IVIG preparations with low concentrations of contaminating IgA are advised in these situations (see the Table below).

Although IVIG has improved the patient's ability to handle infections, aggressive treatment for acute bacterial infections with specific antibiotics continues to be necessary. No difference in efficacy among the brands of IVIG is recognized. One review indicated that IVIG at a mean dose of 0.42 g/kg in 162 treatment years resulted in an infection rate similar to the general pediatric population. All 18 children in that study had normal growth patterns. Thus far, the possibility of other infectious agents, notably hepatitis C virus (HCV), has not been a problem in the newer preparations of IVIG, with the additional viral inactivations steps incorporated into the manufacturing processes.

Table 1. Immune Globulin, Intravenous (Open Table in a new window)

Brand(Manufacturer) Manufacturing Process pH Additives (IVIG products containing sucrose are more often associated with renal dysfunction, acute renal failure, and osmotic nephrosis, particularly with preexisting risk factors [eg, history of renal insufficiency, diabetes mellitus, age >65 y, dehydration, sepsis, paraproteinemia, nephrotoxic drugs].) Parenteral Form and Final Concentrations IgA Content mcg/mL
Carimune NF



(ZLB Behring)



Kistler-Nitschmann fractionation, pH 4 incubation, nanofiltration 6.4-6.8 6% solution: 10% sucrose, < 20 mg NaCl/g protein Lyophilized powder 3, 6, 9, 12% Trace
Flebogamma



(Grifols USA)



Cohn-Oncley fractionation, PEG precipitation, ion-exchange chromatography, pasteurization 5.1-6 Sucrose free, contains 5% D-sorbitol Liquid 5% < 50
Gammagard Liquid 10%



(Baxter Bioscience)



Cohn-Oncley cold ethanol fractionation, cation and anion exchange chromatography, solvent detergent treated, nanofiltration, low pH incubation 4.6-5.1 0.25 M glycine Ready-for-use liquid 10% 37
Gammar-P IV



(ZLB Behring)



Cohn-Oncley fraction II/III, ultrafiltration, pasteurization 6.4-7.2 5% solution: 5% sucrose, 3% albumin, 0.5% NaCl Lyophilized powder 5% < 20
Gamunex



(Talecris Biotherapeutics)



Cohn-Oncley fractionation, caprylate-chromatography purification, cloth and depth filtration, low pH incubation 4-4.5 Contains no sugar, contains glycine Liquid 10% 46
Gammaplex



(Bio Products)



Solvent/detergent treatment targeted to enveloped viruses; virus filtration using Pall Ultipor to remove small viruses including nonenveloped viruses; low pH incubation 4.8-5.1 Contains sorbitol (40 mg/mL); do not administer if fructose intolerant Ready-for-use solution 5% < 10
Iveegam EN



(Baxter Bioscience)



Cohn-Oncley fraction II/III, ultrafiltration, pasteurization 6.4-7.2 5% solution: 5% glucose, 0.3% NaCl Lyophilized powder 5% < 10
Polygam S/D



Gammagard S/D



(Baxter Bioscience for the American Red Cross)



Cohn-Oncley cold ethanol fractionation followed by ultracentrafiltration and ion exchange chromatography, solvent detergent treated 6.4-7.2 5% solution: 0.3% albumin, 2.25% glycine, 2% glucose Lyophilized powder 5%, 10% < 1.6 (5% solution)
Octagam



(Octapharma USA)



9/24/10: Withdrawn from market because of unexplained reports of thromboembolic events



Cohn-Oncley fraction II/III, ultrafiltration, low pH incubation, S/D treatment pasteurization 5.1-6 10% maltose Liquid 5% 200
Panglobulin



(Swiss Red Cross for the American Red Cross)



Kistler-Nitschmann fractionation, pH 4 incubation, trace pepsin, nanofiltration 6.6 Per gram of IgG: 1.67 g sucrose,< 20 mg NaCl Lyophilized powder 3, 6, 9, 12% 720
Privigen



(CSL Behring)



pH 4 incubation, octanoic acid fractionation, depth filtration, and virus filtration 4.6-5 10% solution; Preservative-free and sucrose- and maltose-free Ready-to-use solution 10% 25

Contents of table are adapted from the following sources:

  1. Manufacturers' literature.
  2. Siegel J. The Product: All intravenous immunoglobulins are not equivalent. Pharmacotherapy. 2005; 25(11 Pt 2):78S-84S.
  3. Shah S. Pharmacy consideration for the use of IGIV therapy. Am J Health-Syst Pharm. 2005; 62(Suppl 3):S5-11.

Table 2. Immune Globulin, Subcutaneous (Open Table in a new window)

Brand(Manufacturer) Manufacturing Process pH Additives Parenteral Form and Final Concentrations IgA Content mcg/mL
Vivaglobin



(ZLB Behring)



Cold ethanol fractionation, pasteurization 6.4-7.2 2.25% glycine, 0.3% NaCl Liquid 16% (160 mg/mL) < 50 mcg/mL
Next

Antibiotics

Class Summary

Antibiotics are most commonly used to treat sinopulmonary infections caused by polysaccharide-encapsulated bacteria (S pneumoniae, H influenzae type b).

Amoxicillin, amoxicillin/clavulanate, and cefuroxime axetil are the drugs of choice for the common extracellular bacteria that cause sinopulmonary infections. Ceftriaxone is used in patients with more severe sinopulmonary infections, in patients who respond poorly to oral antibiotics, and in patients with significant bronchiectasis. Ceftriaxone is also used for penicillin-resistant pneumococcal infections. Clarithromycin covers mycoplasmal infections and many bacterial sinopulmonary infections. Vancomycin is chosen in patients who are allergic to cephalosporins and when the isolate is resistant to penicillin. Fluoroquinolones are valuable for respiratory pathogens, including staphylococci, and in patients with multiple antibiotic allergies.

Amoxicillin (Trimox, Amoxil, Biomox)

 

Interferes with synthesis of cell wall mucopeptides during active multiplication, resulting in bactericidal activity against susceptible bacteria.

Amoxicillin/clavulanate (Augmentin)

 

Drug combination treats bacteria resistant to beta-lactam antibiotics. In children >3 mo, base dose on amoxicillin content. Because of different amoxicillin-clavulanic acid ratios in 250-mg tab (250:125) and in 250-mg chewable tab (250:62.5), do not use 250-mg tab until child weighs >40 kg

Cefuroxime axetil (Ceftin)

 

Second-generation cephalosporin that maintains gram-positive activity of first-generation cephalosporins; adds activity against Proteus mirabilis, H influenzae, Escherichia coli, Klebsiella pneumoniae, and M catarrhalis.

Ceftriaxone (Rocephin)

 

Third-generation cephalosporin with broad-spectrum activity; efficacy against resistant organisms. Arrests bacterial growth by binding to ≥ 1 penicillin-binding proteins.

Clarithromycin (Biaxin)

 

Inhibits bacterial growth, possibly by blocking dissociation of peptidyl tRNA from ribosomes, causing RNA-dependent protein synthesis to arrest.

Vancomycin (Lyphocin, Vancocin, Vancoled)

 

Potent antibiotic directed against gram-positive organisms and active against enterococcal species. Indicated for patients who cannot receive penicillins and cephalosporins, in patients in whom these failed, or in those with infections due to resistant staphylococci. To prevent toxicity, current recommendation is to assay vancomycin trough levels after third dose with sample drawn 0.5 h before next dose. Use CrCl to adjust dose in renal impairment.

Previous
Next

Bronchodilators

Class Summary

Inhaler bronchodilator therapy is the mainstay of pulmonary care in most patients with XLA. A combination of a beta2-agonist (eg, albuterol, salmeterol) with a high-potency steroid (eg, budesonide, fluticasone) is conventional care.

Inhalers are used to relieve bronchoconstriction and decrease the inflammatory response in the respiratory tree. Both pulmonary and nasal inhalers may be needed. Inhaler use is hampered in young children and in others who cannot understand the technique of administration and in older individuals who are unable to achieve forceful inhalation. Adding a spacer is customary to improve coordination in children. If patients cannot reliably use a metered-dose inhaler, a nebulizer may be an option. Steroid inhalation is followed by rinsing the mouth to prevent thrush.

Albuterol (Proventil, Ventolin)

 

Relaxes bronchial smooth muscle by action on beta2-receptors with little effect on cardiac muscle contractility. Is also available as a solution for nebulization. MDI delivers 90 mcg/actuation.

Salmeterol (Serevent Diskus)

 

Can relieve bronchospasms by relaxing the smooth muscles of the bronchioles. Effect may also facilitate expectoration. Each actuation delivers 50 mcg.

Formoterol (Foradil)

 

Can relieve bronchospasms by relaxing smooth muscles of bronchioles in conditions associated with bronchitis, emphysema, asthma, or bronchiectasis. Effect may also facilitate expectoration. Shown to improve symptoms and morning peak flows.

Incidence of side effects higher when administered at more frequent doses than recommended. Bronchodilating effect lasts >12 h. Use in addition to regular use of anticholinergic agents. Useful in cases in which bronchodilators are used frequently. Available as PO inhalant powder cap and administered via Aerolizer inhaler.

Previous
Next

Corticosteroids, Inhaled

Class Summary

These agents are used to prevent and decrease inflammatory reaction within airway.

Beclomethasone (Qvar)

 

Inhibits bronchoconstriction mechanisms, produces direct smooth muscle relaxation, and may decrease number and activity of inflammatory cells, decreasing airway hyperresponsiveness. Some patients may require higher doses of inhaled beclomethasone. Qvar available as 40 mcg or 80 mcg per actuation.

Fluticasone (Flovent HFA, Flovent Diskus)

 

Has extremely potent vasoconstrictive and anti-inflammatory activity. Has weak HPA-axis inhibitory potency when applied topically. Some patients may require higher doses. Various inhalant devices deliver different dosages per actuation. Flovent HFA delivers 44 mcg, 110 mcg, and 220 mcg per actuation, whereas Flovent Diskus is specially designed with blister pack containing 50 mcg as a powder for inhalation.

Flunisolide (AeroBid, AeroSpan)

 

Has extremely potent vasoconstrictive and anti-inflammatory activity. Has weak HPA-axis inhibitory potency when applied topically. Some patients may require higher doses. AeroBid (flunisolide CFC) delivers about 250 mcg/actuation. AeroSpan (flunisolide HFA) delivers about 80 mcg/actuation.

Budesonide inhaled (Pulmicort Turbuhaler, Pulmicort Respules)

 

Inhibits bronchoconstriction mechanisms, produces direct smooth muscle relaxation, and may decrease number and activity of inflammatory cells, decreasing airway hyperresponsiveness. Available in various inhaled products. Pulmicort Turbuhaler delivers a powder that is inhaled (200 mcg/actuation). Pulmicort Flexhaler delivers a powder for inhalation as either 90 mcg or 180 mcg per dose. Pulmicort Respules is an inhalation susp administered via nebulization (available in 2 strengths: 0.25 mg/2 mL, 0.5 mg/2 mL).

Previous
 
 
Contributor Information and Disclosures
Author

Terry W Chin, MD, PhD Associate Clinical Professor, Department of Pediatrics, University of California, Irvine, School of Medicine; Associate Director, Cystic Fibrosis Center, Attending Staff Physician, Department of Pediatric Pulmonology, Allergy, and Immunology, Memorial Miller Children's Hospital

Terry W Chin, MD, PhD is a member of the following medical societies: American Academy of Allergy Asthma and Immunology, American Association of Immunologists, American College of Allergy, Asthma and Immunology, American College of Chest Physicians, American Federation for Clinical Research, American Thoracic Society, California Society of Allergy, Asthma and Immunology, California Thoracic Society, Clinical Immunology Society, Los Angeles Pediatric Society, Western Society for Pediatric Research

Disclosure: Nothing to disclose.

Specialty Editor Board

Mary L Windle, PharmD Adjunct Associate Professor, University of Nebraska Medical Center College of Pharmacy; Editor-in-Chief, Medscape Drug Reference

Disclosure: Nothing to disclose.

Chief Editor

Harumi Jyonouchi, MD Faculty, Division of Allergy/Immunology and Infectious Diseases, Department of Pediatrics, Saint Peter's University Hospital

Harumi Jyonouchi, MD is a member of the following medical societies: American Academy of Allergy Asthma and Immunology, American Academy of Pediatrics, American Association of Immunologists, American Medical Association, Clinical Immunology Society, New York Academy of Sciences, Society for Experimental Biology and Medicine, Society for Pediatric Research, Society for Mucosal Immunology

Disclosure: Nothing to disclose.

Additional Contributors

James M Oleske, MD, MPH François-Xavier Bagnoud Professor of Pediatrics, Director, Division of Pulmonary, Allergy, Immunology and Infectious Diseases, Department of Pediatrics, Rutgers New Jersey Medical School; Professor, Department of Quantitative Methods, Rutgers New Jersey Medical School

James M Oleske, MD, MPH is a member of the following medical societies: Academy of Medicine of New Jersey, American Academy of Allergy Asthma and Immunology, American Academy of Hospice and Palliative Medicine, American Association of Public Health Physicians, American College of Preventive Medicine, American Pain Society, Infectious Diseases Society of America, Infectious Diseases Society of New Jersey, Medical Society of New Jersey, Pediatric Infectious Diseases Society, Arab Board of Family Medicine, American Academy of Pain Management, National Association of Pediatric Nurse Practitioners, Association of Clinical Researchers and Educators, American Academy of HIV Medicine, American Thoracic Society, American Academy of Pediatrics, American Public Health Association, American Society for Microbiology, Infectious Diseases Society of America, Pediatric Infectious Diseases Society

Disclosure: Nothing to disclose.

Acknowledgements

John Wilson Georgitis, MD Consulting Staff, Lafayette Allergy Services

John Wilson Georgitis, MD is a member of the following medical societies: American Academy of Allergy Asthma and Immunology, American Academy of Pediatrics, American Association for the Advancement of Science, American College of Chest Physicians, American Lung Association, American Medical Writers Association, and American Thoracic Society

Disclosure: Nothing to disclose.

References
  1. Bruton OC. Agammaglobulinemia. Pediatrics. 1952 Jun. 9(6):722-8. [Medline].

  2. Khan WN. Colonel Bruton's kinase defined the molecular basis of X-linked agammaglobulinemia, the first primary immunodeficiency. J Immunol. 2012 Apr 1. 188(7):2933-5. [Medline].

  3. York NR, de la Morena MT. 50 years ago in the journal of pediatrics: a decade with agammaglobulinemia. J Pediatr. 2012 May. 160:756.

  4. Mohamed AJ, Yu L, Backesjo CM, et al. Bruton's tyrosine kinase (Btk): function, regulation, and transformation with special emphasis on the PH domain. Immunol Rev. 2009 Mar. 228(1):58-73. [Medline].

  5. Sochorova K, Horvath R, Rozhova D et al. Impaired Toll-like receptor 8-mediated IL-6 and TNF-alpha production in antigen-presenting cells from patients with X-linked agammaglobulinemia. Blood. 2007. 109:2553-6. [Medline].

  6. Doyle SL, Jefferies CA, Feighery C, O'Neill LA. Signaling by Toll-like receptors 8 and 9 requires Bruton's tyrosine kinase. J Biol Chem. 2007 Dec 21. 282(51):36953-60. [Medline].

  7. Taneichi H, Kanegane H, Sira MM, et al. Toll-like receptor signaling is impaired in dendritic cells from patients with X-linked agammaglobulinemia. Clin Immunol. 2008 Feb. 126(2):148-54. [Medline].

  8. Hasan M, Lopez-Herrera G, Blomberg KE. Defective Toll-like receptor 9-mediated cytokine production in B cells from Bruton’s tyrosine kinase-deficient mice. Immunology. 2008. 123:239-49. [Medline].

  9. Schmidt NW, Thieu VT, Mann BA et al. Bruton’s tyrosine kinase in required for TLR-induced IL-10 production. J Immunol. 2006. 117:7203-10. [Medline].

  10. Nasseri S, Sorouri R, Pourpak Z, Yeganeh M, Aghamohammadi A, Fiorini M, et al. Molecular characterization of Bruton's tyrosine kinase deficiency in 12 Iranian patients with presumed X-linked agammaglobulinemia. J Investig Allergol Clin Immunol. 2011. 21:572-4. [Medline].

  11. Vijayan V, Baumgart-Vogt E, Naidu S, Qian G, Immenschuh S. Bruton's tyrosine kinase is required for TLR-dependent heme oxygenase-1 gene activation via Nrf2 in macrophages. J Immunol. 2011 Jul 15. 187(2):817-27. [Medline].

  12. Abbott JK1, Ochs HD, Gelfand EW. Coding-region alterations in BTK do not universally cause X-linked agammaglobulinemia. J Allergy Clin Immunol. Nov 2013. 132:1246-8.

  13. Toth B, Volokha A, Mihas A, et al. Genetic and demographic features of X-linked agammaglobulinemia in Eastern and Central Europe: a cohort study. Mol Immunol. 2009 Jun. 46(10):2140-6. [Medline].

  14. Lopez-Herrera G, Berron-Ruiz L, Mogica-Martinez D, Espinosa-Rosales F, Santos-Argumedo L. Characterization of Bruton's tyrosine kinase mutations in Mexican patients with X-linked agammaglobulinemia. Mol Immunol. 2008 Feb. 45(4):1094-8. [Medline].

  15. Ramalho VD, Oliveira Júnior EB, Tani SM, Roxo Júnior P, Vilela MM. Mutations of Bruton's tyrosine kinase gene in Brazilian patients with X-linked agammaglobulinemia. Braz J Med Biol Res. 2010 Sep. 43(9):910-3. [Medline].

  16. Qin X1, Jiang LP, Tang XM, Wang M, Liu EM, Zhao XD. Clinical features and mutation analysis of X-linked agammaglobulinemia in 20 Chinese patients. World J Pediatr. Aug 2013. 9:273-7. [Medline].

  17. Merchant RH, Parekh D, Ahmad N, Madkaikar M, Ahmed J. X linked agammaglobulinemia: a single centre experience from India. Indian J Pediatr. Jan 2014. 81:92-94.

  18. Chun JK, Lee TJ, Song JW, Linton JA, Kim DS. Analysis of clinical presentations of Bruton disease: a review of 20 years of accumulated data from pediatric patients at Severance Hospital. Yonsei Med J. 2008 Feb 29. 49(1):28-36. [Medline].

  19. De Silva R, Gunawardena S, Wickremesinghe G, Ranasinghe B, Namasivayam Y. Primary immune deficiency among patients with recurrent infections. Ceylon Med J. 2007 Sep. 52(3):83-6. [Medline].

  20. Aghamohammadi A, Fiorini M, Moin M, et al. Clinical, immunological and molecular characteristics of 37 Iranian patients with X-linked agammaglobulinemia. Int Arch Allergy Immunol. 2006. 141(4):408-14. [Medline].

  21. Mohiuddin MS, Abbott JK, Hubbard N, Torgerson TR, Ochs HD, Gelfand EW. Diagnosis and evaluation of primary panhypogammaglobulinemia: a molecular and genetic challenge. J Allergy Clin Immunol. Jun 2013. 131:1717-8. [Medline].

  22. Jongco AM, Gough JD, Sarnataro K, Rosenthal DW, Moreau J, Ponda P, et al. X-linked agammaglobulinemia presenting as polymicrobial pneumonia, including Pneumocystis jirovecii. Ann Allergy Asthma Immunol. Jan 2014. 112:74-75. [Medline].

  23. Ariganello P1, Angelino G, Scarselli A, Salfa I, Della Corte M, De Matteis A, et al. Relapsing Campylobacter jejuni Systemic Infections in a Child with X-Linked Agammaglobulinemia. Case Rep Pediatr. 2013. 2013:735108.

  24. Agarwal S, Mayer L. Pathogenesis and treatment of gastrointestinal disease in antibody deficiency syndromes. J Allergy Clin Immunol. 2009 Oct. 124(4):658-64. [Medline].

  25. Freeman AF, Holland SM. Persistent bacterial infections and primary immune disorders. Curr Opin Microbiol. 2007. 10:70-5. [Medline].

  26. Arai A, Kitano A, Sawabe E, et al. Miura ORelapsing Campylobacter coli bacteremia with reactive arthritis in a patient with X-linked agammaglobulinemia. Intern Med. 2007. 46:605-9. [Medline].

  27. Mamishi S, Shahmahmoudi S, Tabatabaie H, et al. Novel BTK mutation presenting with vaccine-associated paralytic poliomyelitis. Eur J Pediatr. 2008 Mar 4. [Medline].

  28. Katamura K, Hattori H, Kunishima T, et al. Non-progressive viral myelitis in X-linked agammaglobulinemia. Brain Dev. 2002 Mar. 24(2):109-11. [Medline].

  29. Bloom KA, Chung D, Cunningham-Rundles C. Osteoarticular infectious complications in patients with primary immunodeficiencies. Curr Opin Rheumatol. 2008 Jul. 20(4):480-5. [Medline]. [Full Text].

  30. Sukumaran S, Marzan K, Shaham B, Church JA. A child with x-linked agammaglobulinemia and enthesitis-related arthritis. Int J Rheumatol. 2011. 2011:175973. [Medline]. [Full Text].

  31. Behniafard N1, Aghamohammadi A, Abolhassani H, Pourjabbar S, Sabouni F, Rezaei N. Autoimmunity in X-linked agammaglobulinemia: Kawasaki disease and review of the literature. Expert Rev Clin Immunol. Feb 2012. 8:155-9. [Medline].

  32. Zhu Z1, Kang Y, Lin Z, Huang Y, Lv H, Li Y. X-linked agammaglobulinemia combined with juvenile idiopathic arthritis and invasive Klebsiella pneumoniae polyarticular septic arthritis. Clin Rheumatol. Feb 2014. Epub. [Medline].

  33. Brosens LA, Tytgat KM, Morsink FH, et al. Multiple colorectal neoplasms in X-linked agammaglobulinemia. Clin Gastroenterol Hepatol. 2008 Jan. 6(1):115-9. [Medline].

  34. Sikora AG, Lee KC. Otolaryngologic manifestations of immunodeficiency. Otolaryngol Clin North Am. 2003 Aug. 36(4):647-72. [Medline].

  35. Stewart DM, Tian L, Notarangelo LD, Nelson DL. X-linked hypogammaglobulinemia and isolated growth hormone deficiency: an update. Immunol Res. 2007. 38(1-3):391-9. [Medline].

  36. Stewart DM, Tian L, Notarangelo LD, Nelson DL. Update on X-linked hypogammaglobulinemia with isolated growth hormone deficiency. Curr Opin Allergy Clin Immunol. 2005 Dec. 5(6):510-2. [Medline].

  37. Shin DM, Jo EK, Kanegane H, et al. Transcriptional regulatory defects in the first intron of Bruton's tyrosine kinase. Pediatr Int. 2008 Dec. 50(6):801-5. [Medline].

  38. Lee PP, Chen TX, Jiang LP, et al. Clinical characteristics and genotype-phenotype correlation in 62 patients with X-linked agammaglobulinemia. J Clin Immunol. 2010 Jan. 30(1):121-31. [Medline].

  39. Wang Y, Kanegane H, Wang X, et al. Mutation of the BTK gene and clinical feature of X-linked agammaglobulinemia in mainland China. J Clin Immunol. 2009 May. 29(3):352-6. [Medline].

  40. Teimourian S, Nasseri S, Pouladi N, Yeganeh M, Aghamohammadi A. Genotype-phenotype correlation in Bruton's tyrosine kinase deficiency. J Pediatr Hematol Oncol. 2008 Sep. 30(9):679-83. [Medline].

  41. Bondioni MP, Duse M, Plebani A, et al. Pulmonary and sinusal changes in 45 patients with primary immunodeficiencies: computed tomography evaluation. J Comput Assist Tomogr. 2007 Jul-Aug. 31(4):620-8. [Medline].

  42. Gharagozlou M, Ebrahimi FA, Farhoudi A, et al. Pulmonary complications in primary hypogammaglobulinemia: a survey by high resolution CT scan. Monaldi Arch Chest Dis. 2006 Jun. 65(2):69-74. [Medline].

  43. Moreau T, Calmels B, Barlogis V, et al. Potential application of gene therapy to X-linked agammaglobulinemia. Curr Gene Ther. 2007 Aug. 7(4):284-94. [Medline].

  44. Liu Y, Wu Y, Lam KT, Lee PP, Tu W, Lau YL. Dendritic and T cell response to influenza is normal in the patients with X-linked agammaglobulinemia. J Clin Immunol. 2012 Jun. 32(3):421-9. [Medline]. [Full Text].

  45. Ballow M. Safety of IGIV therapy and infusion-related adverse events. Immunol Res. 2007. 38(1-3):122-32. [Medline].

  46. Chinen J, Shearer WT. Subcutaneous immunoglobulins: alternative for the hypogammaglobulinemic patient?. J Allergy Clin Immunol. 2004 Oct. 114(4):934-5. [Medline].

  47. Ochs HD, Gupta S, Kiessling P, Nicolay U, Berger M. Safety and efficacy of self-administered subcutaneous immunoglobulin in patients with primary immunodeficiency diseases. J Clin Immunol. 2006 May. 26(3):265-73. [Medline].

  48. Gustafson R, Gardulf A, Hansen S, et al. Rapid subcutaneous immunoglobulin administration every second week results in high and stable serum immunoglobulin G levels in patients with primary antibody deficiencies. Clin Exp Immunol. 2008 May. 152(2):274-9. [Medline].

  49. Leal RC, Bertelli EC, Soler ZA. Recurrent pneumonia caused by genetic immunodeficiency: a prophylactic and rehabililtative approach. Braz J Infect Dis. 2007. 11:307-10. [Medline].

  50. Orange JS, Hossny EM, Weiler CR, et al. Use of intravenous immunoglobulin in human disease: a review of evidence by members of the Primary Immunodeficiency Committee of the American Academy of Allergy, Asthma and Immunology. J Allergy Clin Immunol. 2006 Apr. 117(4 Suppl):S525-53. [Medline].

  51. Orange JS, Grossman WJ, Navickis RJ, Wilkes MM. Impact of trough IgG on pneumonia incidence in primary immunodeficiency: A meta-analysis of clinical studies. Clin Immunol. 2010 Oct. 137(1):21-30. [Medline].

  52. Moore ML, Quinn JM. Subcutaneous immunoglobulin replacement therapy for primary antibody deficiency: advancements into the 21st century. Ann Allergy Asthma Immunol. 2008 Aug. 101(2):114-21; quiz 122-3, 178. [Medline].

  53. Berger M. Incidence of infection is inversely related to steady-state (trough) serum IgG level in studies of subcutaneous IgG in PIDD. J Clin Immunol. 2011 Oct. 31(5):924-6. [Medline].

  54. Beaute J, Levy P, Millet V, et al. Economic evaluation of immunoglobulin replacement in patients with primary antibody deficiencies. Clin Exp Immunol. May/2010. 160:240-5. [Medline]. [Full Text].

  55. Howard V, Myers LA, Williams DA, et al. Stem cell transplants for patients with X-linked agammaglobulinemia. Clin Immunol. 2003 May. 107(2):98-102. [Medline].

  56. Quinti I, Pierdominici M, Marziali M, Giovannetti A, Donnanno S, Chapel H. European surveillance of immunoglobulin safety--results of initial survey of 1243 patients with primary immunodeficiencies in 16 countries. Clin Immunol. 2002 Sep. 104(3):231-6. [Medline].

  57. Buckley RH. Pulmonary complications of primary immunodeficiencies. Paediatr Respir Rev. 2004. 5 Suppl A:S225-33. [Medline].

  58. Chen Y, Stirling RG, Paul E, Hore-Lacy F, Thompson BR, Douglass JA. Longitudinal decline in lung function in patients with primary immunoglobulin deficiencies. J Allergy Clin Immunol. 2011 Jun. 127(6):1414-7. [Medline].

  59. Quinti I, Soresina A, Guerra A, et al. Effectiveness of immunoglobulin replacement therapy on clinical outcome in patients with primary antibody deficiencies: results from a multicenter prospective cohort study. J Clin Immunol. 2011 Jun. 31(3):315-22. [Medline].

  60. Basile N, Danielian S, Oleastro M, et al. Clinical and molecular analysis of 49 patients with X-linked agammaglobulinemia from a single center in Argentina. J Clin Immunol. 2009 Jan. 29(1):123-9. [Medline].

  61. Quartier P, Debre M, De Blic J, et al. Early and prolonged intravenous immunoglobulin replacement therapy in childhood agammaglobulinemia: a retrospective survey of 31 patients. J Pediatr. 1999 May. 134(5):589-96. [Medline].

  62. Aghamohammadi A, Allahverdi A, Abolhassani H, et al. Comparison of pulmonary diseases in common variable immunodeficiency and X-linked agammaglobulinaemia. Respirology. 2010 Feb. 15(2):289-95. [Medline].

  63. Aghamohammadi A, Cheraghi T, Rezaei N, et al. Neutropenia associated with X-linked Agammaglobulinemia in an Iranian referral center. Iran J Allergy Asthma Immunol. 2009 Mar. 8(1):43-7. [Medline].

  64. Jacobs ZD, Guajardo JR, Anderson KM. XLA-associated neutropenia treatment: a case report and review of the literature. J Pediatr Hematol Oncol. 2008 Aug. 30(8):631-4. [Medline].

  65. Cunningham-Rundles C. Autoimmunity in primary immune deficiency: taking lessons from our patients. Clin Exp Immunol. 2011 Jun. 164 Suppl 2:6-11. [Medline]. [Full Text].

  66. Ziegner UH, Kobayashi RH, Cunningham-Rundles C, et al. Progressive neurodegeneration in patients with primary immunodeficiency disease on IVIG treatment. Clin Immunol. 2002 Jan. 102(1):19-24. [Medline].

  67. Papapetropoulos S, Friedman J, Blackstone C, Kleiner GI, Bowen BC, Singer C. A progressive, fatal dystonia-Parkinsonism syndrome in a patient with primary immunodeficiency receiving chronic IVIG therapy. Mov Disord. 2007 Aug 15. 22(11):1664-6. [Medline].

  68. Berlucchi M, Soresina A, Redaelli De Zinis LO, et al. Sensorineural hearing loss in primary antibody deficiency disorders. J Pediatr. 2008 Aug. 153(2):293-6. [Medline].

  69. Staines Boone AT, Torres Martínez MG, López Herrera G, de Leija Portilla JO, Espinosa Padilla SE, Espinosa Rosales FJ, et al. Gastric Adenocarcinoma in the Context of X-linked Agammaglobulinemia : Case Report and Review of the Literature. J Clin Immunol. 34. Feb 2014:134-7. [Medline].

  70. Lopez-Granados E, Perez de Diego R, Ferreira Cerdan A, et al. A genotype-phenotype correlation study in a group of 54 patients with X-linked agammaglobulinemia. J Allergy Clin Immunol. 2005 Sep. 116(3):690-7. [Medline].

  71. Gonzalo-Garijo MA, Sánchez-Vega S, Pérez-Calderón R, Pérez-Rangel I, Corrales-Vargas S, Fernández de Mera JJ, et al. Renal Amyloidosis in a Patient with X-linked Agammaglobulinemia (Bruton's Disease) and Bronchiectasis. J Clin Immunol. Jan 2014. 34:119-22. [Medline].

  72. Morwood K, Bourne H, Gold M, et al. Phenotypic variability: clinical presentation between the 6th year and the 60th year in a family with X-linked agammaglobulinemia. J Allergy Clin Immunol. 2004 Apr. 113(4):783-5. [Medline].

  73. Soresina A, Nacinovich R, Bomba M, et al. The quality of life of children and adolescents with X-linked agammaglobulinemia. J Clin Immunol. 2009 Jul. 29(4):501-7. [Medline].

  74. Sigmon JR, Kasasbeh E, Krishnaswamy G. X-linked agammaglobulinemia diagnosed late in life: case report and review of the literature. Clin Mol Allergy. 2008 Jun 2. 6:5. [Medline]. [Full Text].

  75. Aghamohammadi A, Moin M, Farhoudi A, et al. Efficacy of intravenous immunoglobulin on the prevention of pneumonia in patients with agammaglobulinemia. FEMS Immunol Med Microbiol. 2004 Mar 8. 40(2):113-8. [Medline].

  76. Black C, Zavod MB, Gosselin BJ. Haemophilus influenzae lymphadenopathy in a patient with agammaglobulinemia: clinical-histologic-microbiologic correlation and review of the literature. Arch Pathol Lab Med. 2005 Jan. 129(1):100-3. [Medline].

  77. Conley ME, Broides A, Hernandez-Trujillo V, et al. Genetic analysis of patients with defects in early B-cell development. Immunol Rev. 2005 Feb. 203:216-34. [Medline].

  78. Conley ME, Howard V. Clinical findings leading to the diagnosis of X-linked agammaglobulinemia. J Pediatrics. 2002. 141:566-71. [Medline].

  79. Eijkhout HW, van Der Meer JW, Kallenberg CG, et al. The effect of two different dosages of intravenous immunoglobulin on the incidence of recurrent infections in patients with primary hypogammaglobulinemia. A randomized, double-blind, multicenter crossover trial. Ann Intern Med. 2001 Aug 7. 135(3):165-74. [Medline].

  80. Merchant RH, Parekh D, Ahmad N, Madkaikar M, Ahmed J. X linked agammaglobulinemia: a single centre experience from India. Indian J Pediatr. Jan 2014. 81:92-94.

  81. Morales P, Hernandez D, Vicente R, et al. Lung transplantation in patients with x-linked agammaglobulinemia. Transplant Proc. 2003 Aug. 35(5):1942-3. [Medline].

  82. Ní Gabhann J, Spence S, Wynne C, Smith S, Byrne JC, Coffey B, et al. Defects in acute responses to TLR4 in Btk-deficient mice result in impaired dendritic cell-induced IFN-? production by natural killer cells. Clin Immunol. 2012 Mar. 142(3):373-82. [Medline].

  83. Plebani A, Soresina A, Rondelli R, et al. Clinical, immunological, and molecular analysis in a large cohort of patients with X-linked agammaglobulinemia: an Italian multicenter study. Clin Immunol. 2002 Sep. 104(3):221-30. [Medline].

  84. Skull S, Kemp A. Treatment of hypogammaglobulinaemia with intravenous immunoglobulin, 1973-93. Arch Dis Child. 1996 Jun. 74(6):527-30. [Medline].

  85. Staines Boone AT1, Torres Martínez MG, López Herrera G, de Leija Portilla JO, Espinosa Padilla SE, Espinosa Rosales FJ, et al. Gastric Adenocarcinoma in the Context of X-linked Agammaglobulinemia : Case Report and Review of the Literature. J Clin Immunol. Feb 2014. 34:134-7. [Medline].

  86. Yu PW, Tabuchi RS, Kato RM, et al. Sustained correction of B-cell development and function in a murine model of X-linked agammaglobulinemia (XLA) using retroviral-mediated gene transfer. Blood. 2004. 104:1281-90. [Medline]. [Full Text].

 
Previous
Next
 
This patient presented with recurrent otitis and areas of cellulitis in the diaper area. Pseudomonas aeruginosa and Staphylococcus aureus were isolated from the skin lesions. Autoimmune hemolytic anemia and autoimmune neutropenia were confirmed based on the presence of autoantibodies. The patient has a mutation on exon 15, A504T, which changed an asparagine residue to a valine residue.
Bruton agammaglobulinemia (ie, X-linked agammaglobulinemia [XLA]) in brothers. XLA was diagnosed in the less-robust younger brother when he presented with neutropenia and typhlitis. The older brother, with a history of 7 episodes of pneumonia, was then evaluated and diagnosed with XLA. In both brothers CD19- B cells were less than 1%; this finding is consistent with XLA.
Table 1. Immune Globulin, Intravenous
Brand(Manufacturer) Manufacturing Process pH Additives (IVIG products containing sucrose are more often associated with renal dysfunction, acute renal failure, and osmotic nephrosis, particularly with preexisting risk factors [eg, history of renal insufficiency, diabetes mellitus, age >65 y, dehydration, sepsis, paraproteinemia, nephrotoxic drugs].) Parenteral Form and Final Concentrations IgA Content mcg/mL
Carimune NF



(ZLB Behring)



Kistler-Nitschmann fractionation, pH 4 incubation, nanofiltration 6.4-6.8 6% solution: 10% sucrose, < 20 mg NaCl/g protein Lyophilized powder 3, 6, 9, 12% Trace
Flebogamma



(Grifols USA)



Cohn-Oncley fractionation, PEG precipitation, ion-exchange chromatography, pasteurization 5.1-6 Sucrose free, contains 5% D-sorbitol Liquid 5% < 50
Gammagard Liquid 10%



(Baxter Bioscience)



Cohn-Oncley cold ethanol fractionation, cation and anion exchange chromatography, solvent detergent treated, nanofiltration, low pH incubation 4.6-5.1 0.25 M glycine Ready-for-use liquid 10% 37
Gammar-P IV



(ZLB Behring)



Cohn-Oncley fraction II/III, ultrafiltration, pasteurization 6.4-7.2 5% solution: 5% sucrose, 3% albumin, 0.5% NaCl Lyophilized powder 5% < 20
Gamunex



(Talecris Biotherapeutics)



Cohn-Oncley fractionation, caprylate-chromatography purification, cloth and depth filtration, low pH incubation 4-4.5 Contains no sugar, contains glycine Liquid 10% 46
Gammaplex



(Bio Products)



Solvent/detergent treatment targeted to enveloped viruses; virus filtration using Pall Ultipor to remove small viruses including nonenveloped viruses; low pH incubation 4.8-5.1 Contains sorbitol (40 mg/mL); do not administer if fructose intolerant Ready-for-use solution 5% < 10
Iveegam EN



(Baxter Bioscience)



Cohn-Oncley fraction II/III, ultrafiltration, pasteurization 6.4-7.2 5% solution: 5% glucose, 0.3% NaCl Lyophilized powder 5% < 10
Polygam S/D



Gammagard S/D



(Baxter Bioscience for the American Red Cross)



Cohn-Oncley cold ethanol fractionation followed by ultracentrafiltration and ion exchange chromatography, solvent detergent treated 6.4-7.2 5% solution: 0.3% albumin, 2.25% glycine, 2% glucose Lyophilized powder 5%, 10% < 1.6 (5% solution)
Octagam



(Octapharma USA)



9/24/10: Withdrawn from market because of unexplained reports of thromboembolic events



Cohn-Oncley fraction II/III, ultrafiltration, low pH incubation, S/D treatment pasteurization 5.1-6 10% maltose Liquid 5% 200
Panglobulin



(Swiss Red Cross for the American Red Cross)



Kistler-Nitschmann fractionation, pH 4 incubation, trace pepsin, nanofiltration 6.6 Per gram of IgG: 1.67 g sucrose,< 20 mg NaCl Lyophilized powder 3, 6, 9, 12% 720
Privigen



(CSL Behring)



pH 4 incubation, octanoic acid fractionation, depth filtration, and virus filtration 4.6-5 10% solution; Preservative-free and sucrose- and maltose-free Ready-to-use solution 10% 25
Table 2. Immune Globulin, Subcutaneous
Brand(Manufacturer) Manufacturing Process pH Additives Parenteral Form and Final Concentrations IgA Content mcg/mL
Vivaglobin



(ZLB Behring)



Cold ethanol fractionation, pasteurization 6.4-7.2 2.25% glycine, 0.3% NaCl Liquid 16% (160 mg/mL) < 50 mcg/mL
Previous
Next
 
 
 
 
 
All material on this website is protected by copyright, Copyright © 1994-2016 by WebMD LLC. This website also contains material copyrighted by 3rd parties.