Close
New

Medscape is available in 5 Language Editions – Choose your Edition here.

 

Exercise-Induced Anaphylaxis

  • Author: Peter N Huynh, MD; Chief Editor: Harumi Jyonouchi, MD  more...
 
Updated: Nov 17, 2015
 

Background

Exercise-induced anaphylaxis (EIA) is a rare disorder in which anaphylaxis occurs after physical activity.[1] The symptoms may include pruritus, hives, flushing, wheezing, and GI involvement, including nausea, abdominal cramping, and diarrhea. If physical activity continues, patients may progress to more severe symptoms, including angioedema, laryngeal edema, hypotension, and, ultimately, cardiovascular collapse. Cessation of physical activity usually results in immediate improvement of symptoms. (See Clinical Presentation.)

Sheffer and Austen described 4 phases in the sequence of the anaphylaxis attack—prodromal, early, fully established, and late—in a case series of 16 patients aged 12-54 years with exercise-induced anaphylaxis.[2] Prodromal symptoms included a feeling of fatigue, generalized warmth and pruritus, and cutaneous erythema. The early phase featured generalized urticaria. In fully established attacks, symptoms included choking, respiratory stridor, GI colic, nausea, and vomiting. Late sequelae included frontal headaches that persisted for 24-72 hours. (See Clinical Presentation.)

Vigorous forms of physical activity such as jogging, tennis, dancing, and bicycling are more commonly associated with exercise-induced anaphylaxis, although lower levels of exertion (eg, walking and yard work) are also capable of triggering attacks. In a long-term follow-up study, the physical activity most often associated with exercise-induced anaphylaxis was jogging.[3] Other reports have implicated running, soccer, raking leaves, shoveling snow, and horseback riding.[4] (See Etiology.)

Exercise-induced anaphylaxis attacks are not consistently elicited by the same type and intensity of physical activity in a given patient. Co-factors such as foods, alcohol, temperature, drugs (eg, aspirin and other nonsteroidal anti-inflammatory drugs), humidity, seasonal changes, and hormonal changes are important in the precipitation of attacks.[1] (See Etiology.)

A distinct subset of exercise-induced anaphylaxis is food-dependent exercise-induced anaphylaxis (FDEIA), in which anaphylaxis develops only if physical activity occurs within a few hours after eating a specific food. Neither food intake nor physical activity by itself produces anaphylaxis.[5]

The foods most commonly implicated in food-dependent exercise-induced anaphylaxis are wheat, shellfish, tomatoes, peanuts, and corn.[6] However, the disorder has been reported with a wide variety of foods, including fruits, seeds, milk, soybean, lettuce, peas, beans, rice, and various meats.

One case report described a patient who developed symptoms of anaphylaxis only after simultaneous ingestion of 2 foods (wheat and umeboshi) prior to exercise.[7] In the nonspecific form of food-dependent exercise-induced anaphylaxis, eating any food prior to exercise induces anaphylaxis.[8]

Inhalant allergens have also been implicated in exercise-induced anaphylaxis. In a case report, a 14-year-old boy presented with severe exercise-induced anaphylaxis after the ingestion of Penicillium mold–contaminated food and running in the school.[9] In another case report, a 16-year-old girl presented with exercise-induced anaphylaxis after ingestion of wheat flour contaminated with storage mites.[10]

Familial exercise-induced anaphylaxis has been described in patients with a family history of exercise-induced anaphylaxis and atopy.[11] Seven males from 3 generations were described with cutaneous and respiratory symptoms induced by physical activity.[12]

Prevention remains the best treatment for patients with exercise-induced anaphylaxis (see Treatment and Management). Reducing physical activity to a lower level may diminish the frequency of attacks. In patients whose attacks are associated with ingestion of food, avoiding the offending food for 12 hours prior to exercise is essential. If no offending food is known, then the patient should avoid eating any food 6-8 hours prior to exercise. Patients should avoid exercise in extremely humid, hot, or cold weather and during the allergy season.

Patients should be instructed on the proper use of emergency injectable epinephrine (Adrenaclick, EpiPen, Twinject) and have one available at all times. Patients should wear a medical alert bracelet with instructions on the use of epinephrine. (See Medication.)

To see complete information on Pediatric Anaphylaxis, please go to the main article by clicking here.

Next

Pathophysiology

The pathophysiology of exercise-induced anaphylaxis and food-dependent exercise-induced anaphylaxis is not well understood. The exercise-specific factor, or combination of factors, responsible for causing the attacks remains unclear.[13]

Cutaneous mast cell degranulation and elevations of plasma histamine[14] and tryptase[15] have been documented in exercise-induced anaphylaxis. Therefore, mast cell activation and release of histamine and other mediators is believed to be responsible for the clinical manifestations of exercise-induced anaphylaxis, as with other forms of anaphylaxis. In patients with exercise-induced anaphylaxis, the threshold for mast cell degranulation is lowered, although the specific physiologic or cellular events responsible for lowering this threshold are unknown.

During exercise, endogenous endorphins are released. Endorphins are known to be mast cell secretagogues,[16] although the exact mechanism of this effect in the setting of exercise-induced anaphylaxis remains unknown.

By definition, patients with food-dependent exercise-induced anaphylaxis are able to tolerate ingestion of the causative food without difficulty in the absence of exercise and are also able to exercise without difficulty in the absence of exposure to the causative food. This suggests that this disorder involves temporary loss of tolerance as a result of some physiologic change induced by the combination of physical activity and the causative food.

Multiple theories have been proposed to explain food-dependent exercise-induced anaphylaxis. Intestinal permeability increases during exercise; thus, allergenic proteins may have greater access to the gut-associated immune system.[17] Nonsteroidal anti-inflammatory drugs (NSAIDs) and alcohol can act as co-triggers for food-dependent exercise-induced anaphylaxis and exercise-induced anaphylaxis by their ability to increase intestinal permeability.[18]

Food-dependent exercise-induced anaphylaxis may be associated with abnormalities of the autonomic nervous system. In one study, autonomic function was tested in 4 children with food-dependent exercise-induced anaphylaxis and 4 normal controls.[19] After exercise challenge, the parasympathetic nervous system activity increased in the test group, whereas the responsiveness of the sympathetic nervous system was reduced compared with controls.

Transglutaminase is activated during exercise and is capable of binding to gliadin moieties (specifically omega-5 gliadin) in wheat to form larger, potentially immunogenic complexes that demonstrate increased immunoglobulin E (IgE) binding and cross-linking.[20] This theory suggests that exercise may induce changes in the processing of specific allergens, which may lead to increased allergenicity.

In a controlled study in 16 adults with a history of wheat-dependent, exercise-induced anaphylaxis (WDEIA) and omega-5-gliadin-specific IgE, prospective oral food challenges (OFCs) with increasing amounts of gluten alone, or in combination with one or more co-factors, were performed until symptoms developed. Plasma gliadin levels were elevated by higher gluten doses, gluten and exercise, or gluten and acetylsalicylic acid (ASA) plus alcohol. Positive plasma gliadin threshold levels differed by more than 100-fold (median 628 pg/mL, range 15–2111). In some patients, exercise was not an essential trigger for symptoms.[21]

Epitope recognition may influence the severity of allergic clinical reactions, as is the case for peanut allergy.[22] Exercise-specific factors may facilitate the immunologic process of epitope recognition.

Exercise mobilizes and activates intestinal immune cells, which disrupts the normal balance between pro-inflammatory and anti-inflammatory responses.[23] Dysregulation of this process in patients with food-sensitized immune cells could be involved in exercise-induced reactions.

Exercise may result in changes in mucosal tissue osmolality, which may result in basophil histamine release. A case report demonstrated increased basophil histamine release in response to hyperosmolar medium in a patient with food-dependent exercise-induced anaphylaxis compared with normal controls.[24]

Previous
Next

Epidemiology

The exact prevalence of exercise-induced anaphylaxis and food-dependent exercise-induced anaphylaxis is not well established. Although both disorders have been reported around the world,[3, 4, 25] few attempts to systemically establish prevalence rates have been made.

A questionnaire study of 76,229 junior high students in Japan showed prevalence of exercise-induced anaphylaxis in this population to be 0.03% and food-dependent exercise-induced anaphylaxis to be 0.017%.[4] An older study from Japan reported a higher prevalence of 0.21% for food-dependent exercise-induced anaphylaxis among junior high students.[25]

Exercise-induced anaphylaxis and food-dependent exercise-induced anaphylaxis are usually sporadic, although familial cases have been reported.[11, 12]

In a large cohort of patients with exercise-induced anaphylaxis including 279 patients, females predominated 2:1 versus males.[26] Another study did not show a sex predilection.[4]

Cases of exercise-induced anaphylaxis have been reported in children as young as 3 years. Typical age of onset is adolescent age to the third decade of life. In a 10-year retrospective study by Sheffer et al, the average age of onset was 26 years, with a range from 3 years to 66 years at the time of onset.[3]

Previous
Next

Patient Education

Patients must understand the emergent nature of exercise-induced anaphylaxis and the proper use of emergency injectable epinephrine (Adrenaclick, EpiPen, Twinject).

Instruct patients with exercise-induced anaphylaxis on the ways to abate a full attack by recognizing the early warning signs and symptoms and taking the steps to prevent the progression of the syndrome. This includes limiting exercise and being cautious in temperature extremes.

Patients with the food-dependent or medicine-dependent variants of exercise-induced anaphylaxis need to be aware of the offending food or medication (if specific ones can be identified) and know how long to refrain from exercise after eating.

Educate patients with exercise-induced anaphylaxis about the need to exercise with a partner who is aware of exercise-induced anaphylaxis and the emergent nature of an episode.

Previous
Next

Prognosis

The prognosis of patients with exercise-induced anaphylaxis is generally favorable. Most patients experience fewer and less severe attacks over time. Although rare, several fatalities have been attributed to exercise-induced anaphylaxis or food-dependent exercise-induced anaphylaxis.[27, 28] No cure for this disorders exists. With appropriate lifestyle changes, however, patients may be able to reduce or eliminate episodes of anaphylaxis, and prompt intervention can abort those episodes that do occur.

Previous
 
 
Contributor Information and Disclosures
Author

Peter N Huynh, MD Chief of Allergy and Immunology, Kaiser Permanente, Panorama City Medical Center

Peter N Huynh, MD is a member of the following medical societies: American Academy of Allergy Asthma and Immunology, American Academy of Pediatrics, American College of Allergy, Asthma and Immunology, American College of Physicians, American Medical Association

Disclosure: Nothing to disclose.

Coauthor(s)

Edward K Hu, MD Fellow, Division of Allergy and Immunology, LAC+USC Medical Center

Edward K Hu, MD is a member of the following medical societies: American Academy of Allergy Asthma and Immunology, American Academy of Pediatrics, American College of Allergy, Asthma and Immunology

Disclosure: Nothing to disclose.

Salima A Thobani, MD Fellow, Division of Allergy and Immunology, LAC+USC Medical Center

Salima A Thobani, MD is a member of the following medical societies: American College of Physicians, American Medical Student Association/Foundation, American Medical Womens Association

Disclosure: Nothing to disclose.

Lyne Scott, MD Chief, Division of Allergy and Immunology, Director, Fellowship Training Program, Director, The Breathmobile Program, LAC+USC Healthcare Network; Assistant Professor, Department of Pediatrics, Keck School of Medicine of the University of Southern California

Lyne Scott, MD is a member of the following medical societies: American Academy of Allergy Asthma and Immunology, American Academy of Pediatrics, American College of Allergy, Asthma and Immunology

Disclosure: Nothing to disclose.

Chief Editor

Harumi Jyonouchi, MD Faculty, Division of Allergy/Immunology and Infectious Diseases, Department of Pediatrics, Saint Peter's University Hospital

Harumi Jyonouchi, MD is a member of the following medical societies: American Academy of Allergy Asthma and Immunology, American Academy of Pediatrics, American Association of Immunologists, American Medical Association, Clinical Immunology Society, New York Academy of Sciences, Society for Experimental Biology and Medicine, Society for Pediatric Research, Society for Mucosal Immunology

Disclosure: Nothing to disclose.

Acknowledgements

C Lucy Park, MD Head, Division of Allergy, Immunology, and Pulmonology, Associate Professor, Department of Pediatrics, University of Illinois at Chicago College of Medicine

C Lucy Park, MD is a member of the following medical societies: American Academy of Allergy Asthma and Immunology, American Medical Association, Chicago Medical Society, Clinical Immunology Society, and Illinois State Medical Society

Disclosure: Nothing to disclose.

Paul H Sammut, MBBCh, FAAP, FCCP Medical Director of the Pediatric Intensive Care Unit, Associate Professor, Department of Pediatrics, Section of Pulmonology, University of Nebraska Medical Center

Disclosure: Nothing to disclose.

William B Stratbucker, MD, Assistant Professor of Pediatrics, Division of General Academic Pediatrics, Rush Medical College; Consulting Staff, Rush University Medical Center, Rush Children's Hospital

Disclosure: Nothing to disclose.

Mary L Windle, PharmD Adjunct Associate Professor, University of Nebraska Medical Center College of Pharmacy; Editor-in-Chief, Medscape Drug Reference

Disclosure: Nothing to disclose.

References
  1. Sheffer AL, Austen KF. Exercise-induced anaphylaxis. J Allergy Clin Immunol. 1984 May. 73(5 Pt 2):699-703. [Medline].

  2. Sheffer AL, Austen KF. Exercise-induced anaphylaxis. J Allergy Clin Immunol. 1980 Aug. 66(2):106-11. [Medline].

  3. Shadick NA, Liang MH, Partridge AJ, et al. The natural history of exercise-induced anaphylaxis: survey results from a 10-year follow-up study. J Allergy Clin Immunol. 1999 Jul. 104(1):123-7. [Medline].

  4. Aihara Y, Takahashi Y, Kotoyori T, et al. Frequency of food-dependent, exercise-induced anaphylaxis in Japanese junior-high-school students. J Allergy Clin Immunol. 2001 Dec. 108(6):1035-9. [Medline].

  5. Maulitz RM, Pratt DS, Schocket AL. Exercise-induced anaphylactic reaction to shellfish. J Allergy Clin Immunol. 1979 Jun. 63(6):433-4. [Medline].

  6. Romano A, Di Fonso M, Giuffreda F, et al. Food-dependent exercise-induced anaphylaxis: clinical and laboratory findings in 54 subjects. Int Arch Allergy Immunol. 2001 Jul. 125(3):264-72. [Medline].

  7. Aihara Y, Kotoyori T, Takahashi Y, Osuna H, Ohnuma S, Ikezawa Z. The necessity for dual food intake to provoke food-dependent exercise-induced anaphylaxis (FEIAn): a case report of FEIAn with simultaneous intake of wheat and umeboshi. J Allergy Clin Immunol. 2001 Jun. 107(6):1100-5. [Medline].

  8. Soyer OU, Sekerel BE. Food dependent exercise induced anaphylaxis or exercise induced anaphylaxis?. Allergol Immunopathol (Madr). 2008 Jul-Aug. 36(4):242-3. [Medline].

  9. Fiocchi A, Mirri GP, Santini I, Bernardo L, Ottoboni F, Riva E. Exercise-induced anaphylaxis after food contaminant ingestion in double-blinded, placebo-controlled, food-exercise challenge. J Allergy Clin Immunol. 1997 Sep. 100(3):424-5. [Medline].

  10. Sanchez-Borges M, Iraola V, Fernandez-Caldas E, et al. Dust mite ingestion-associated, exercise-induced anaphylaxis. J Allergy Clin Immunol. 2007 Sep. 120(3):714-6. [Medline].

  11. Longley S, Panush RS. Familial exercise-induced anaphylaxis. Ann Allergy. 1987 Apr. 58(4):257-9. [Medline].

  12. Grant JA, Farnam J, Lord RA, Thueson DO, Lett-Brown MA, Wallfisch H. Familial exercise-induced anaphylaxis. Ann Allergy. 1985 Jan. 54(1):35-8. [Medline].

  13. Ansley L, Bonini M, Delgado L, Del Giacco S, Du Toit G, Khaitov M, et al. Pathophysiological mechanisms of exercise-induced anaphylaxis: an EAACI position statement. Allergy. 2015 Oct. 70 (10):1212-21. [Medline].

  14. Lewis J, Lieberman P, Treadwell G, Erffmeyer J. Exercise-induced urticaria, angioedema, and anaphylactoid episodes. J Allergy Clin Immunol. 1981 Dec. 68(6):432-7. [Medline].

  15. Schwartz HJ. Elevated serum tryptase in exercise-induced anaphylaxis. J Allergy Clin Immunol. 1995 Apr. 95(4):917-9. [Medline].

  16. Casale TB, Bowman S, Kaliner M. Induction of human cutaneous mast cell degranulation by opiates and endogenous opioid peptides: evidence for opiate and nonopiate receptor participation. J Allergy Clin Immunol. 1984 Jun. 73(6):775-81. [Medline].

  17. Hanakawa Y, Tohyama M, Shirakata Y, Murakami S, Hashimoto K. Food-dependent exercise-induced anaphylaxis: a case related to the amount of food allergen ingested. Br J Dermatol. 1998 May. 138(5):898-900. [Medline].

  18. Heyman M. Gut barrier dysfunction in food allergy. Eur J Gastroenterol Hepatol. 2005 Dec. 17(12):1279-85. [Medline].

  19. Fukutomi O, Kondo N, Agata H, et al. Abnormal responses of the autonomic nervous system in food-dependent exercise-induced anaphylaxis. Ann Allergy. 1992 May. 68(5):438-45. [Medline].

  20. Palosuo K, Varjonen E, Nurkkala J, Kalkkinen N, Harvima R, Reunala T. Transglutaminase-mediated cross-linking of a peptic fraction of omega-5 gliadin enhances IgE reactivity in wheat-dependent, exercise-induced anaphylaxis. J Allergy Clin Immunol. 2003 Jun. 111(6):1386-92. [Medline].

  21. Brockow K, Kneissl D, Valentini L, Zelger O, Grosber M, Kugler C, et al. Using a gluten oral food challenge protocol to improve diagnosis of wheat-dependent exercise-induced anaphylaxis. J Allergy Clin Immunol. 2015 Apr. 135 (4):977-84.e4. [Medline].

  22. Shreffler WG, Lencer DA, Bardina L, Sampson HA. IgE and IgG4 epitope mapping by microarray immunoassay reveals the diversity of immune response to the peanut allergen, Ara h 2. J Allergy Clin Immunol. 2005 Oct. 116(4):893-9. [Medline].

  23. Cooper DM, Radom-Aizik S, Schwindt C, Zaldivar F Jr. Dangerous exercise: lessons learned from dysregulated inflammatory responses to physical activity. J Appl Physiol. 2007 Aug. 103(2):700-9. [Medline].

  24. Barg W, Wolanczyk-Medrala A, Obojski A, et al. Food-dependent exercise-induced anaphylaxis: possible impact of increased basophil histamine releasability in hyperosmolar conditions. J Investig Allergol Clin Immunol. 2008. 18(4):312-5. [Medline].

  25. Tanaka S. An epidemiological survey on food-dependent exercise-induced anaphylaxis in kindergartners, schoolchildren and junior high school students. Asia Pac J Public Health. 1994. 7(1):26-30. [Medline].

  26. Wade JP, Liang MH, Sheffer AL. Exercise-induced anaphylaxis: epidemiologic observations. Prog Clin Biol Res. 1989. 297:175-82. [Medline].

  27. Ausdenmoore RW. Fatality in a teenager secondary to exercise-induced anaphylaxis. Pediatr Asthma Allergy Immunol. 1991. 5;21:

  28. Flannagan LM, Wolf BC. Sudden death associated with food and exercise. J Forensic Sci. 2004 May. 49(3):543-5. [Medline].

  29. Casale TB, Keahey TM, Kaliner M. Exercise-induced anaphylactic syndromes. Insights into diagnostic and pathophysiologic features. JAMA. 1986 Apr 18. 255(15):2049-53. [Medline].

  30. Wanderer AA. Cold urticaria syndromes: historical background, diagnostic classification, clinical and laboratory characteristics, pathogenesis, and management. J Allergy Clin Immunol. 1990 Jun. 85(6):965-81. [Medline].

  31. Valent P. Diagnostic evaluation and classification of mastocytosis. Immunol Allergy Clin North Am. 2006 Aug. 26(3):515-34. [Medline].

  32. Cicardi M, Agostoni A. Hereditary angioedema. N Engl J Med. 1996 Jun 20. 334(25):1666-7. [Medline].

  33. Agostoni A, Aygoren-Pursun E, Binkley KE, et al. Hereditary and acquired angioedema: problems and progress: proceedings of the third C1 esterase inhibitor deficiency workshop and beyond. J Allergy Clin Immunol. 2004 Sep. 114(3 Suppl):S51-131. [Medline].

  34. Simons FE. Anaphylaxis: Recent advances in assessment and treatment. J Allergy Clin Immunol. 2009 Oct. 124(4):625-36; quiz 637-8. [Medline].

  35. Sugimura T, Tananari Y, Ozaki Y, Maeno Y, Ito S, Yoshimoto Y. Effect of oral sodium cromoglycate in 2 children with food-dependent exercise-induced anaphylaxis (FDEIA). Clin Pediatr (Phila). 2009 Nov. 48(9):945-50. [Medline].

  36. Aihara M, Miyazawa M, Osuna H, et al. Food-dependent exercise-induced anaphylaxis: influence of concurrent aspirin administration on skin testing and provocation. Br J Dermatol. 2002 Mar. 146(3):466-72. [Medline].

 
Previous
Next
 
 
 
 
All material on this website is protected by copyright, Copyright © 1994-2016 by WebMD LLC. This website also contains material copyrighted by 3rd parties.