Close
New

Medscape is available in 5 Language Editions – Choose your Edition here.

 

Pediatric Wiskott-Aldrich Syndrome Clinical Presentation

  • Author: Robert A Schwartz, MD, MPH; Chief Editor: Harumi Jyonouchi, MD  more...
 
Updated: Jul 15, 2016
 

History

The characteristic triad of bleeding, eczema, and recurrent infections generally become evident during the first year of life. However, only one third of patients with WASP mutations express the classic triad of Wiskott-Aldrich syndrome (WAS).

The first clinical signs are petechiae (see the image below) and ecchymoses of the skin and oral mucosa and bloody diarrhea. Patients may have prolonged bleeding after circumcision or from the umbilical stump. CNS bleeding occurs in fewer than 2% of patients but may occur at birth or later due to minor trauma. One series of 154 patients found petechiae or purpura in 78%, serious GI bleeding (hematemesis or melena) in 28%, epistaxis in 16%, and intracranial bleeding in 2% of patients.[2]

This 1-year-old boy was hospitalized because of re This 1-year-old boy was hospitalized because of respiratory syncytial virus bronchiolitis but was noted to have eczema and petechiae (note arrow). His history was significant for a subdural hematoma for which trauma was denied; at that time the platelet count was 212,000. His diagnosis of Wiskott-Aldrich Syndrome (WAS) was confirmed by the detection of a missense mutation (Phe 128 Ser).

With the loss of maternally transported immunoglobulin G (IgG), infants begin to have infections, most commonly otitis media, at 4-8 months. Pneumonia, sepsis, and meningitis are caused by polysaccharide-coated bacteria, predominantly Streptococcus pneumoniae,Haemophilus influenzae type b (Hib), and Staphylococcus aureus.

Less commonly, gram-negative bacteria such as Klebsiella pneumoniae and Escherichia coli are etiologic agents for sepsis or meningitis. Viral infections may be unusually severe. Herpes simplex often causes mucocutaneous infections, and varicella-zoster virus may be life-threatening. Opportunistic infections such as Pneumocystis carinii have been reported but are rare. Fungal infections are usually restricted to mucocutaneous candidiasis.

Atopic symptoms are frequently present, and eczema develops in 81% of these patients.[2] Eczema ranges from mild to severe, and patients usually present earlier than immunocompetent infants. The eczema may improve as the patient gets older, although serious complications such as secondary infection (eg, cellulitis, abscess) or erythroderma can occur.[24] Milk and other food allergies have been associated with eczema in Wiskott-Aldrich syndrome. Eczema may worsen in the presence of infection; it also follows the typical pattern of worsening in the winter. Although the dermatitis often clinically mimics atopic dermatitis, it is generally more exfoliative. Conventional topical care with moisturizing creams and steroids have moderate benefit. Other atopic disorders, reactive airway disease (typically in toddlers), and allergic rhinitis (typically in school-aged children) are also common.

Autoimmune disorders, particularly autoimmune hemolytic anemia (AIHA), can be observed in patients of any age. In some cases, infections seem to aggravate AIHA. Arthritis, nephritis, and immune thrombocytopenia and neutropenia are also increased in incidence.

Lymphomas and leukemias constitute most malignancies, although various other malignancies are reported. Patients can present in mid childhood. The risk of malignancy seems to increase with age. The most common malignancy is non-Hodgkin lymphoma.

Next

Physical

Watch for signs of bleeding, infection, malignancy, and atopy during the physical examination. The patients' general appearance and vital signs are important. Follow height and weight over time to monitor appropriate development. Patients usually experience normal growth for the first several years of life, even with episodes of severe acute infections

Examine the skin for any evidence of eczema. The face, scalp, and flexural areas are most commonly involved. Superficial or deep infections such as secondary bacterial infections (eg, impetigo, cellulitis, furuncles, abscesses), eczema herpeticum, and molluscum contagiosum are common. Also check the skin for purpura (thrombocytopenia). The presence of lower extremity ecchymoses in infants (see the image below) who are not yet walking indicates a platelet abnormality. Examine for bloody diarrhea in the absence of an infectious etiology. Other manifestations may include hematemesis, melena, epistaxis, and hematuria.

This 10-month-old infant presented with bloody dia This 10-month-old infant presented with bloody diarrhea at age 4 months followed by recurrent otitis media infections. A maternal uncle had Wiskott-Aldrich Syndrome (WAS). Note the mild malar eczema and pretibial ecchymoses in this nonambulatory child. His diagnosis was confirmed by immunologic parameters, thrombocytopenia, and low platelet volume.

During head and neck examinations, note any abnormalities of the tympanic membranes (eg, otitis media) or sinuses and mucous membranes (eg, sinonasal infections, pharyngitis, thrush). The older infant often has a dramatically increased incidence of otitis media, although it responds appropriately to oral antibiotics.

Carefully auscultate the lungs to check for wheezing (eg, asthma) and rales or rhonchi (eg, pulmonary infection such as bronchitis or pneumonia).

Clinical signs of anemia, paleness, tachycardia, and even jaundice can be caused by blood loss or AIHA. Renal failure, presumably secondary to glomerulonephritis, should also be considered as a potential cause for anemia.

Investigate for a possible malignancy if adenopathy or hepatosplenomegaly is present.

Neurological examination is particularly relevant if meningitis, CNS lymphoma, or intracranial bleeding or infection is considered.

Cutaneous vasculitis may be rarely seen as recurrent acute hemorrhagic edema of infancy.[25]

Previous
Next

Causes

The WASP gene is located on the Xp11.22-23 region of the X chromosome and is inherited in a sex-linked fashion. A male child of a female carrier has a 50% chance of being affected; a female child has a 50% chance of being a carrier. Theoretically, female carriers of WASP mutations could have clinical illness if extreme lyonization occurs,[26] but nonrandom X inactivation is characteristic for carriers. Wiskott-Aldrich syndrome is caused by various mutations in the gene that code for the WASp. This mutation is expressed in hematopoietic cells (eg, lymphocytes) and impairs the normal function of WASp in actin polymerization.[13] Eczema appears to be related to the abnormal function of the T cells.

Mutations can occur in any of the 12 exons of the WASP gene. Approximately one half of the reported mutations are single-base pair substitutions, often within CpG dinucleotide hot spots. Half of the mutations have been identified within the first 3 exons. Milder disease has been reported for mutations in exons 1 and 2.

A strong phenotype-genotype correlation was discovered, with classic Wiskott-Aldrich syndrome occurring when WASp is absent, X-linked thrombocytopenia occurring when mutated WASp is expressed, and X-linked neutropenia when missense mutations occur in the Cdc42-binding site; however, exceptions are noted.[2, 27]

Previous
 
 
Contributor Information and Disclosures
Author

Robert A Schwartz, MD, MPH Professor and Head of Dermatology, Professor of Pathology, Pediatrics, Medicine, and Preventive Medicine and Community Health, Rutgers New Jersey Medical School; Visiting Professor, Rutgers University School of Public Affairs and Administration

Robert A Schwartz, MD, MPH is a member of the following medical societies: Alpha Omega Alpha, New York Academy of Medicine, American Academy of Dermatology, American College of Physicians, Sigma Xi

Disclosure: Nothing to disclose.

Coauthor(s)

Robyn Siperstein, MD Staff Physician, Department of Dermatology, University of Medicine and Dentistry of New Jersey, New Jersey Medical School

Robyn Siperstein, MD is a member of the following medical societies: American Academy of Dermatology, American Medical Association, American Society for MOHS Surgery, Sigma Xi

Disclosure: Nothing to disclose.

Specialty Editor Board

Mary L Windle, PharmD Adjunct Associate Professor, University of Nebraska Medical Center College of Pharmacy; Editor-in-Chief, Medscape Drug Reference

Disclosure: Nothing to disclose.

David J Valacer, MD 

David J Valacer, MD is a member of the following medical societies: American Academy of Allergy Asthma and Immunology, American Academy of Pediatrics, American Association for the Advancement of Science, American Thoracic Society, New York Academy of Sciences

Disclosure: Nothing to disclose.

Chief Editor

Harumi Jyonouchi, MD Faculty, Division of Allergy/Immunology and Infectious Diseases, Department of Pediatrics, Saint Peter's University Hospital

Harumi Jyonouchi, MD is a member of the following medical societies: American Academy of Allergy Asthma and Immunology, American Academy of Pediatrics, American Association of Immunologists, American Medical Association, Clinical Immunology Society, New York Academy of Sciences, Society for Experimental Biology and Medicine, Society for Pediatric Research, Society for Mucosal Immunology

Disclosure: Nothing to disclose.

Additional Contributors

James M Oleske, MD, MPH François-Xavier Bagnoud Professor of Pediatrics, Director, Division of Pulmonary, Allergy, Immunology and Infectious Diseases, Department of Pediatrics, Rutgers New Jersey Medical School; Professor, Department of Quantitative Methods, Rutgers New Jersey Medical School

James M Oleske, MD, MPH is a member of the following medical societies: Academy of Medicine of New Jersey, American Academy of Allergy Asthma and Immunology, American Academy of Hospice and Palliative Medicine, American Association of Public Health Physicians, American College of Preventive Medicine, American Pain Society, Infectious Diseases Society of America, Infectious Diseases Society of New Jersey, Medical Society of New Jersey, Pediatric Infectious Diseases Society, Arab Board of Family Medicine, American Academy of Pain Management, National Association of Pediatric Nurse Practitioners, Association of Clinical Researchers and Educators, American Academy of HIV Medicine, American Thoracic Society, American Academy of Pediatrics, American Public Health Association, American Society for Microbiology, Infectious Diseases Society of America, Pediatric Infectious Diseases Society

Disclosure: Nothing to disclose.

Acknowledgements

The authors and editors of Medscape Reference gratefully acknowledge the contributions of previous author Ann O'Neill Shigeoka, MD to the development and writing of this article.

References
  1. Loyola Presa JG, de Carvalho VO, Morrisey LR, Bonfim CM, Abagge KT, Vasselai A, et al. Cutaneous manifestations in patients with Wiskott-Aldrich syndrome submitted to haematopoietic stem cell transplantation. Arch Dis Child. 2013 Apr. 98(4):304-7. [Medline].

  2. Sullivan KE, Mullen CA, Blaese RM, Winkelstein JA. A multiinstitutional survey of the Wiskott-Aldrich syndrome. J Pediatr. 1994 Dec. 125(6 Pt 1):876-85. [Medline].

  3. Conley ME, Notarangelo LD, Etzioni A. Diagnostic criteria for primary immunodeficiencies. Representing PAGID (Pan-American Group for Immunodeficiency) and ESID (European Society for Immunodeficiencies). Clin Immunol. 1999 Dec. 93(3):190-7. [Medline].

  4. Thrasher AJ. New insights into the biology of Wiskott-Aldrich syndrome (WAS). Hematology Am Soc Hematol Educ Program. 2009. 132-8. [Medline].

  5. Blundell MP, Bouma G, Calle Y, Jones GE, Kinnon C, Thrasher AJ. Improvement of migratory defects in a murine model of Wiskott-Aldrich syndrome gene therapy. Mol Ther. 2008 May. 16(5):836-44. [Medline].

  6. Davis BR, Yan Q, Bui JH, Felix K, Moratto D, Muul LM, et al. Somatic mosaicism in the Wiskott-Aldrich syndrome: Molecular and functional characterization of genotypic revertants. Clin Immunol. 2010 Jan 31. [Medline].

  7. Snapper SB, Meelu P, Nguyen D, Stockton BM, Bozza P, Alt FW. WASP deficiency leads to global defects of directed leukocyte migration in vitro and in vivo. J Leukoc Biol. 2005 Jun. 77(6):993-8. [Medline].

  8. Morales-Tirado V, Sojka DK, Katzman SD, Lazarski CA, Finkelman FD, Urban JF, et al. Critical requirement for the Wiskott-Aldrich syndrome protein in Th2 effector function. Blood. 2009 Dec 23. [Medline].

  9. Notarangelo LD, Miao CH, Ochs HD. Wiskott-Aldrich syndrome. Curr Opin Hematol. 2008 Jan. 15(1):30-6. [Medline].

  10. Gulacsy V, Freiberger T, Shcherbina A, et al. Genetic characteristics of eighty-seven patients with the Wiskott-Aldrich syndrome. Mol Immunol. 2011 Feb. 48(5):788-92. [Medline].

  11. Albert MH, Notarangelo LD, Ochs HD. Clinical spectrum, pathophysiology and treatment of the Wiskott-Aldrich syndrome. Curr Opin Hematol. 2010 Nov 11. [Medline].

  12. Kwan SP, Hagemann TL, Blaese RM, Rosen FS. A high-resolution map of genes, microsatellite markers, and new dinucleotide repeats from UBE1 to the GATA locus in the region Xp11.23. Genomics. 1995 Sep 1. 29(1):247-52. [Medline].

  13. Snapper SB, Rosen FS. The Wiskott-Aldrich syndrome protein (WASP): roles in signaling and cytoskeletal organization. Annu Rev Immunol. 1999. 17:905-29. [Medline].

  14. Anton IM, Jones GE. WIP: a multifunctional protein involved in actin cytoskeleton regulation. Eur J Cell Biol. 2006 Apr. 85(3-4):295-304. [Medline].

  15. Konno A, Kirby M, Anderson SA, Schwartzberg PL, Candotti F. The expression of Wiskott-Aldrich syndrome protein (WASP) is dependent on WASP-interacting protein (WIP). Int Immunol. 2007 Feb. 19(2):185-92. [Medline].

  16. Soderling SH, Scott JD. WAVE signalling: from biochemistry to biology. Biochem Soc Trans. 2006 Feb. 34(Pt 1):73-6. [Medline].

  17. Takenawa T, Suetsugu S. The WASP-WAVE protein network: connecting the membrane to the cytoskeleton. Nat Rev Mol Cell Biol. 2007 Jan. 8(1):37-48. [Medline].

  18. Perry GH, Spector BD, Schuman LM. The Wiskitt-Aldrich syndrome inthe United States and Canada. J Pediatr. 1980. 97:72.

  19. Ryser O, Morell A, Hitzig WH. Primary immunodeficiencies in Switzerland: first report of the national registry in adults and children. J Clin Immunol. 1988 Nov. 8(6):479-85. [Medline].

  20. Abuzakouk M, Feighery C. Primary immunodeficiency disorders in the Republic of Ireland: first report of the national registry in children and adults. J Clin Immunol. 2005 Jan. 25(1):73-7. [Medline].

  21. Mullen CA, Anderson KD, Blaese RM. Splenectomy and/or bone marrow transplantation in the management of the Wiskott-Aldrich syndrome: long-term follow-up of 62 cases. Blood. 1993 Nov 15. 82(10):2961-6. [Medline]. [Full Text].

  22. Kobayashi R, Ariga T, Nonoyama S, Kanegane H, Tsuchiya S, Morio T. Outcome in patients with Wiskott-Aldrich syndrome following stem cell transplantation: an analysis of 57 patients in Japan. Br J Haematol. 2006 Nov. 135(3):362-6. [Medline].

  23. Parolini O, Ressmann G, Haas OA, Pawlowsky J, Gadner H, Knapp W. X-linked Wiskott-Aldrich syndrome in a girl. N Engl J Med. 1998 Jan 29. 338(5):291-5. [Medline].

  24. Peacocke M, Siminovitch KA. Wiskott-Aldrich syndrome: new molecular and biochemical insights. J Am Acad Dermatol. 1992 Oct. 27(4):507-19. [Medline].

  25. Chandrakasan S, Singh S, Dogra S, Delaunay J, Proust A, Minz RW. Wiskott-Aldrich syndrome presenting with early onset recurrent acute hemorrhagic edema and hyperostosis. Pediatr Blood Cancer. 2011 Jul 1. 56(7):1130-2. [Medline].

  26. Takimoto T, Takada H, Ishimura M, Kirino M, Hata K, Ohara O, et al. Wiskott-Aldrich syndrome in a girl caused by heterozygous WASP mutation and extremely skewed X-chromosome inactivation: a novel association with maternal uniparental isodisomy 6. Neonatology. 2015. 107(3):185-90. [Medline].

  27. Ochs HD, Thrasher AJ. The Wiskott-Aldrich syndrome. J Allergy Clin Immunol. 2006 Apr. 117(4):725-38; quiz 739. [Medline].

  28. Suri D, Singh S, Rawat A, Gupta A, Kamae C, Honma K, et al. Clinical profile and genetic basis of Wiskott-Aldrich syndrome at Chandigarh, North India. Asian Pac J Allergy Immunol. 2012 Mar. 30(1):71-8. [Medline].

  29. Navabi B, Upton JE. Primary immunodeficiencies associated with eosinophilia. Allergy Asthma Clin Immunol. 2016. 12:27. [Medline].

  30. Patiroglu T, Klein C, Gungor HE, Ozdemir MA, Witzel M, Karakukcu M, et al. CLINICAL FEATURES AND GENETIC ANALYSIS OF SIX PATIENTS WITH WISKOTT-ALDRICH SYNDROME REPORTING TWO NOVEL MUTATIONS: EXPERIENCE OF ERCIYES UNIVERSITY, KAYSERI, TURKEY. Genet Couns. 2016. 27 (1):9-24. [Medline].

  31. Zhao Q, Zhang ZY, Zhao XD, Jiang LP, Zhao Y, Yang XQ. [Analysis of prenatal diagnosis for seven high-risk fetuses with Wiskott-Aldrich syndrome]. Zhonghua Er Ke Za Zhi. 2012 Jan. 50(1):15-9. [Medline].

  32. Kang HJ, Shin HY, Ko SH, et al. Unrelated bone marrow transplantation with a reduced toxicity myeloablative conditioning regimen in Wiskott-Aldrich syndrome. J Korean Med Sci. 2008 Feb. 23(1):146-8. [Medline].

  33. Hacein-Bey Abina S, Gaspar HB, Blondeau J, Caccavelli L, Charrier S, Buckland K, et al. Outcomes following gene therapy in patients with severe Wiskott-Aldrich syndrome. JAMA. 2015 Apr 21. 313(15):1550-63. [Medline].

  34. Dupre L, Marangoni F, Scaramuzza S, et al. Efficacy of gene therapy for Wiskott-Aldrich syndrome using a WAS promoter/cDNA-containing lentiviral vector and nonlethal irradiation. Hum Gene Ther. 2006 Mar. 17(3):303-13. [Medline].

  35. Galy A, Roncarolo MG, Thrasher AJ. Development of lentiviral gene therapy for Wiskott Aldrich syndrome. Expert Opin Biol Ther. 2008 Feb. 8(2):181-90. [Medline].

  36. Castiello MC, Scaramuzza S, Pala F, Ferrua F, Uva P, Brigida I, et al. B-cell reconstitution after lentiviral vector-mediated gene therapy in patients with Wiskott-Aldrich syndrome. J Allergy Clin Immunol. 2015 Mar 16. [Medline].

  37. Lacy CF, Armstrong LL, Goldman MP, Lance LL, eds. Drug Information Handbook 2008-2009. 16th ed. Cleveland, OH: Lexi-Comp Inc; 2008.

  38. Hooper JA. Intravenous Immunoglobulins: Evolution of Commercial IVIG Preparations. Immunol Allergy Clin North Am. 2008 Nov. 28(4):765-78. [Medline].

  39. Shah S. Pharmacy considerations for the use of IGIV therapy. Am J Health Syst Pharm. 2005 Aug 15. 62(16 Suppl 3):S5-11. [Medline].

  40. Siegel J. The product: All intravenous immunoglobulins are not equivalent. Pharmacotherapy. 2005 Nov. 25(11 Pt 2):78S-84S. [Medline].

  41. Kroger AT, Atkinson WL, Marcuse EK, Pickering LK. General recommendations on immunization: recommendations of the Advisory Committee on Immunization Practices (ACIP). MMWR Recomm Rep. 2006 Dec 1. 55:1-48. [Medline]. [Full Text].

  42. Recommendations of the Advisory Committee on Immunization Practices (ACIP): use of vaccines and immune globulins for persons with altered immunocompetence. MMWR Recomm Rep. 1993 Apr 9. 42:1-18. [Medline]. [Full Text].

  43. Chen N, Zhang ZY, Liu DW, Liu W, Tang XM, Zhao XD. The clinical features of autoimmunity in 53 patients with Wiskott-Aldrich syndrome in China: a single-center study. Eur J Pediatr. 2015 Apr 16. [Medline].

  44. Undefined. [Medline].

  45. Cianferoni A, Massaad M, Feske S, et al. Defective nuclear translocation of nuclear factor of activated T cells and extracellular signal-regulated kinase underlies deficient IL-2 gene expression in Wiskott-Aldrich syndrome. J Allergy Clin Immunol. 2005 Dec. 116(6):1364-71. [Medline].

  46. Dam T, Danelishvili L, Wu M, Bermudez LE. The fadD2 Gene Is Required for Efficient Mycobacterium avium Invasion of Mucosal Epithelial Cells. J Infect Dis. 2006 Apr 15. 193(8):1135-42. [Medline].

  47. de Saint Basile G, Lagelouse RD, Lambert N, et al. Isolated X-linked thrombocytopenia in two unrelated families is associated with point mutations in the Wiskott-Aldrich syndrome protein gene. J Pediatr. 1996 Jul. 129(1):56-62. [Medline].

  48. Derry JM, Kerns JA, Weinberg KI, et al. WASP gene mutations in Wiskott-Aldrich syndrome and X-linked thrombocytopenia. Hum Mol Genet. 1995 Jul. 4(7):1127-35. [Medline].

  49. Derry JM, Ochs HD, Francke U. Isolation of a novel gene mutated in Wiskott-Aldrich syndrome [published erratum appears in Cell 1994 Dec 2;79(5):following 922]. Cell. 1994 Aug 26. 78(4):635-44. [Medline].

  50. Dupuis-Girod S, Medioni J, Haddad E, et al. Autoimmunity in Wiskott-Aldrich syndrome: risk factors, clinical features, and outcome in a single-center cohort of 55 patients. Pediatrics. 2003 May. 111(5 Pt 1):e622-7. [Medline]. [Full Text].

  51. Eijkhout HW, van Der Meer JW, Kallenberg CG, et al. The effect of two different dosages of intravenous immunoglobulin on the incidence of recurrent infections in patients with primary hypogammaglobulinemia. A randomized, double-blind, multicenter crossover trial. Ann Intern Med. 2001 Aug 7. 135(3):165-74. [Medline]. [Full Text].

  52. Imai K, Morio T, Zhu Y, et al. Clinical course of patients with WASP gene mutations. Blood. 2004 Jan 15. 103(2):456-64. [Medline]. [Full Text].

  53. Lorenzi R, Brickell PM, Katz DR, et al. Wiskott-Aldrich syndrome protein is necessary for efficient IgG-mediated phagocytosis. Blood. 2000 May 1. 95(9):2943-6. [Medline]. [Full Text].

  54. Lutskiy MI, Shcherbina A, Bachli ET, Cooley J, Remold-O'Donnell E. WASP localizes to the membrane skeleton of platelets. Br J Haematol. 2007 Oct. 139(1):98-105. [Medline].

  55. Mullen CA, Anderson KD, Blaese RM. Splenectomy and/or bone marrow transplantation in the management of the Wiskott-Aldrich syndrome: long-term follow-up of 62 cases. Blood. 1993 Nov 15. 82(10):2961-6. [Medline].

  56. Ochs HD, Rosen FS. The Wiskott-Aldrich syndrome. Ochs HD, Smith CIE, Puck J, eds. Primary Immunodeficiency Diseases: a Molecular and Genetic Approach. New York, NY: Oxford University Press; 1999. 292-305.

  57. Olivier A, Jeanson-Leh L, Bouma G, et al. A partial down-regulation of WASP is sufficient to inhibit podosome formation in dendritic cells. Mol Ther. 2006 Apr. 13(4):729-37. [Medline].

  58. Rengan R, Ochs HD, Sweet LI, et al. Actin cytoskeletal function is spared, but apoptosis is increased, in WAS patient hematopoietic cells. Blood. 2000 Feb 15. 95(4):1283-92. [Medline]. [Full Text].

  59. Samarin SN. WASP family proteins act between cytoskeleton and cellular signaling pathways. Biochemistry (Mosc). 2005 Dec. 70(12):1305-9. [Medline].

  60. Tsuboi S, Nonoyama S, Ochs HD. Wiskott-Aldrich syndrome protein is involved in alphaIIbbeta3-mediated cell adhesion. EMBO Rep. 2006 Mar 31. [Medline].

  61. Tsuji Y, Imai K, Kajiwara M, et al. Hematopoietic stem cell transplantation for 30 patients with primary immunodeficiency diseases: 20 years experience of a single team. Bone Marrow Transplant. 2006 Mar. 37(5):469-77. [Medline].

  62. Wietstruck PMA, Zuniga CP, Talesnik GE, Mendez RC, Barriga CF. [Hematopoietic stem cell transplantation for patients with Wiskott-Aldrich syndrome]. Rev Med Chil. 2007 Jul. 135(7):917-23. [Medline].

  63. Xie JW, Zhang ZY, Wu JF, Liu DW, Liu W, Zhao Y, et al. In vivo reversion of an inherited mutation in a Chinese patient with Wiskott-Aldrich syndrome. Hum Immunol. 2015 Apr 8. [Medline].

 
Previous
Next
 
This 10-month-old infant presented with bloody diarrhea at age 4 months followed by recurrent otitis media infections. A maternal uncle had Wiskott-Aldrich Syndrome (WAS). Note the mild malar eczema and pretibial ecchymoses in this nonambulatory child. His diagnosis was confirmed by immunologic parameters, thrombocytopenia, and low platelet volume.
This 1-year-old boy was hospitalized because of respiratory syncytial virus bronchiolitis but was noted to have eczema and petechiae (note arrow). His history was significant for a subdural hematoma for which trauma was denied; at that time the platelet count was 212,000. His diagnosis of Wiskott-Aldrich Syndrome (WAS) was confirmed by the detection of a missense mutation (Phe 128 Ser).
Table. Immune Globulin, Intravenous [37, 38, 39, 40]
Brand(Manufacturer) Manufacturing Process pH Additives (IVIG products containing sucrose are more often associated with renal dysfunction, acute renal failure, and osmotic nephrosis, particularly with preexisting risk factors [eg, history of renal insufficiency, diabetes mellitus, age >65 y, dehydration, sepsis, paraproteinemia, nephrotoxic drugs].) Parenteral Form and Final Concentrations IgA Content mcg/mL
Carimune NF



(CSL Behring)



Kistler-Nitschmann fractionation; pH 4 incubation, nanofiltration 6.4-6.8 6% solution: 10% sucrose, < 20 mg NaCl/g protein Lyophilized powder 3%, 6%, 9%, 12% Trace
Flebogamma



(Grifols USA)



Cohn-Oncley fractionation, PEG precipitation, ion-exchange chromatography, pasteurization 5.1-6 Sucrose free, contains 5% D-sorbitol Liquid 5% < 50
Gammagard Liquid 10%



(Baxter Bioscience)



Cohn-Oncley cold ethanol fractionation, cation and anion exchange chromatography, solvent detergent treated, nanofiltration, low pH incubation 4.6-5.1 0.25M glycine Ready-for-use Liquid 10% 37
Gamunex



(Talecris Biotherapeutics)



Cohn-Oncley fractionation, caprylate-chromatography purification, cloth and depth filtration, low pH incubation 4-4.5 Contains no sugar, contains glycine Liquid 10% 46
Gammaplex



(Bio Products)



Solvent/detergent treatment targeted to enveloped viruses; virus filtration using Pall Ultipor to remove small viruses including nonenveloped viruses; low pH incubation 4.8-5.1 Contains sorbitol (40 mg/mL); do not administer if fructose intolerant Ready-for-use solution 5% < 10
Iveegam EN



(Baxter Bioscience)



Cohn-Oncley fraction II/III; ultrafiltration; pasteurization 6.4-7.2 5% solution: 5% glucose, 0.3% NaCl Lyophilized powder 5% < 10
Polygam S/D



Gammagard S/D



(Baxter Bioscience for the American Red Cross)



Cohn-Oncley cold ethanol fractionation, followed by ultracentrafiltration and ion exchange chromatography; solvent detergent treated 6.4-7.2 5% solution: 0.3% albumin, 2.25% glycine, 2% glucose Lyophilized powder 5%, 10% < 1.6 (5% solution)
Octagam



(Octapharma USA)



9/24/10: Withdrawn from market because of unexplained reports of thromboembolic events



Cohn-Oncley fraction II/III; ultrafiltration; low pH incubation; S/D treatment pasteurization 5.1-6 10% maltose Liquid 5% 200
Panglobulin



(Swiss Red Cross for the American Red Cross)



Kistler-Nitschmann fractionation; pH 4, trace pepsin, nanofiltration 6.6 Per gram of IgG: 1.67 g sucrose, < 20 mg NaCl Lyophilized powder 3%, 6%, 9%, 12% 720
Privigen Liquid 10%



(CSL Behring)



Cold ethanol fractionation, octanoic acid fractionation, and anion exchange chromatography; pH 4 incubation and depth filtration 4.6-5 L-proline (~250 mmol/L) as stabilizer; trace sodium; does not contain carbohydrate stabilizers (eg, sucrose, maltose) Ready-for-use liquid 10% ≤ 25
Previous
Next
 
 
 
 
 
All material on this website is protected by copyright, Copyright © 1994-2016 by WebMD LLC. This website also contains material copyrighted by 3rd parties.