Close
New

Medscape is available in 5 Language Editions – Choose your Edition here.

 

Ostium Primum Atrial Septal Defects Workup

  • Author: Shannon M Rivenes, MD; Chief Editor: P Syamasundar Rao, MD  more...
 
Updated: Aug 04, 2015
 

Imaging Studies

The following studies may be indicated in patients with ostium primum atrial septal defect (ASD)

Chest radiography

With an isolated primum defect and no significant mitral regurgitation, findings of right heart enlargement and of a variable degree of pulmonary overcirculation are noted. In children with hemodynamically significant mitral regurgitation, radiographic evidence of left heart enlargement is also seen.

In patients with relatively small shunts, radiographic evidence of mild-to-moderate right atrial and right ventricular enlargement is seen. A mild degree of increase in pulmonary vascular markings also may be noted.

With larger left-to-right shunts, the heart size is enlarged, with a cardiothoracic ratio greater than 50%. Pulmonary vascular markings are increased in proportion to the pulmonary-to-systemic flow ratio (Qp:Qs). The pulmonary trunk and proximal right pulmonary artery are dilated, and the aortic knob appears proportionally small. The right atrium and right ventricle are significantly enlarged.

Superimposed mitral regurgitation results in left atrial and left ventricular dilation, further enlarging the cardiac silhouette.

Echocardiography 

Echocardiography (see image below) confirms the diagnosis of a primum ASD or partial atrioventricular (AV) canal defect. Anatomy is delineated by 2-dimensional imaging, and shunt flow and AV valve regurgitation are assessed by color and pulsed Doppler.

Two-dimensional imaging

The apical 4-chamber view and subcostal imaging planes readily demonstrate a primum ASD, showing an area of "drop-out" in the inferior atrial septum. Care must be taken to differentiate this from the drop-out noted in the region of the coronary sinus. This may be particularly difficult when the coronary sinus is dilated from drainage of a left superior vena cava.

In the apical imaging plane in a normal heart, the tricuspid valve is more apically positioned than the mitral valve. In AV canal defects, both valves are visualized at the same horizontal level, and the crux of the heart is absent. In a partial canal defect, distinct left and right AV valves are identified. The leaflets are attached to the crest of the interventricular septum and no defect of the interventricular septum is visualized. A tricuspid valve cleft or other abnormalities of the valve leaflets also may be noted.

When present, a cleft is visualized in the anterior mitral valve leaflet pointing toward the interventricular septum. This is best seen in a parasternal or subcostal short-axis view. A double orifice mitral valve or single papillary muscle may be noted. Since the aortic root is not wedged between the mitral and tricuspid annuli, the aortic valve is anteriorly positioned, resulting in a long, narrow, left ventricular outflow tract with a so-called "gooseneck" appearance. Left ventricular outflow tract obstruction may occur from mitral valve tissue crossing the subaortic area.

Color Doppler ultrasonography

The direction of atrial level shunting is readily detected by color Doppler and is best seen from the long-axis subcostal imaging plane. AV valve regurgitation is quantifiable by color Doppler, particularly well seen in the apical 4-chamber view but best evaluated in multiple planes. Tricuspid regurgitation typically is mild in the absence of pulmonary hypertension, whereas mitral regurgitation may range from trivial to severe. A left ventricle to right atrium shunt should be interrogated, and lack of interventricular shunting should be confirmed. Differentiation of a primum ASD from a dilated coronary sinus is also aided by color and spectral Doppler.

Pulsed or continuous wave Doppler ultrasonography

The presence and degree of left ventricular outflow tract obstruction as well as relative pulmonary stenosis from increased flow across the pulmonary valve may be detected. The peak velocity (v) of the tricuspid regurgitant jet can be used to estimate right ventricular pressure. In the absence of right ventricular outflow tract obstruction, the pulmonary artery systolic pressure will approximate (4 X v X v) + right atrial pressure. Pulmonary artery systolic pressure higher than 25 mm Hg indicates the presence of pulmonary hypertension. Estimation of the pulmonary artery pressure by continuous wave Doppler technique is not reliable in patients with left ventricle to right atrial shunting; this high velocity jet may be misinterpreted for the tricuspid regurgitant jet, resulting in an overestimation of the pulmonary artery pressure.

Three-dimensional echocardiography

Although rarely used, 3-dimensional echocardiography may offer a more accurate reconstruction of the AV valve(s) and the atrial septum, providing a more complete preoperative picture for the surgeon.

Transesophageal echocardiography

Transesophageal echocardiography (TEE) is generally reserved for anatomical definition in older patients with poor acoustic windows and for intraoperative assessment during surgical repair. Postoperative assessment is particularly helpful while weaning from cardiopulmonary bypass. Mitral stenosis, residual AV valve regurgitation, left ventricular outflow tract obstruction and residual atrial level shunting may be identified. Pulmonary artery pressure may be estimated by the peak velocity of the tricuspid regurgitation jet. Optimally, residual problems can be identified and corrected before leaving the operating room.

  • Two-dimensional, apical, 4-chamber echocardiogram Two-dimensional, apical, 4-chamber echocardiogram of a partial atrioventricular (AV) canal defect. The asterisk (*) delineates an area of dropout in the inferior atrial septum at the site of the primum atrial septal defect. The AV valves are separate but aligned at the same horizontal level, consistent with a 2-orifice common AV valve. In systole, the medial leaflets of the right- and left-sided AV valves demonstrate attachments to the crest of the interventricular septum, allowing no ventricular level shunting. RA = Right atrium; LA = Left atrium; RV = Right ventricle; LV = Left ventricle.
     
Next

Other Tests

Electrocardiography

Diagnosis of a primum ASD or a partial AV canal defect often can be made based on physical examination findings and the ECG alone. The ECG abnormalities (seen in the image below) are predominantly caused by abnormalities of the conduction system. Specifically, the AV node is displaced posteriorly and inferiorly, and atrial and/or AV nodal conduction often is delayed.

ECG from a patient with a partial atrioventricular ECG from a patient with a partial atrioventricular septal defect. The PR interval is mildly prolonged. Left axis deviation with Q waves in leads I and aVL are present, consistent with a counterclockwise loop in the frontal plane. Right atrial enlargement and an rsR' pattern in the right chest leads also are noted.

Note the following:

  • Displacement of the AV node results in a counterclockwise loop in the frontal plane in 95% of cases. The QRS axis is outside the normal range for age, demonstrating either a left or far left axis, and Q waves are present in leads I and aVL.
  • Delayed conduction through the atria or through the AV node may lead to prolongation of the PR interval (ie, a first degree AV block).
  • Abnormalities in the right precordial leads are similar to those in secundum-type ASDs. The QRS pattern typically is either an rSr' or an rsR' resulting from dilation and hypertrophy of the right ventricular outflow tract caused by volume overload of the right heart.
  • Right atrial enlargement is often detected, demonstrated by a peaked P wave measuring more than 2.5 mm (standard 10 mV/mm). It is best seen in leads II, III, V1, and V3R.
  • With significant mitral regurgitation, left atrial enlargement may be present, demonstrated by a P wave duration of more than 0.08 sec and/or terminal and deep inversion of the P wave in lead V1 or V3R.
Previous
Next

Procedures

Cardiac catherization

Because of the excellent information generally provided by echocardiography, cardiac catheterization is rarely warranted in the diagnosis and management of partial AV canal defects. The exception is a hemodynamic evaluation in a patient with suspected pulmonary vascular obstructive disease. Note the following:

  • In the hemodynamic assessment, systemic and pulmonary venous saturations are generally normal but may be somewhat low in trisomy 21 patients secondary to upper airway obstruction. A step-up in oxygen saturation is noted at the right atrial level secondary to left-to-right shunting across the atrial septum. A step-up in saturations at the right ventricular level should be notably absent. However, a step-up at the right ventricular level may be seen because of better mixing distally. A calculated Qp:Qs ratio of 2:1 is hemodynamically significant.
  • In the hemodynamic assessment, intracardiac and pulmonary artery pressures are directly measured. Pulmonary vascular resistance is calculated, but note that results may be affected by the presence of upper airway obstruction or congestion. If significant upper airway obstruction resulting in carbon dioxide retention is present, placement of an airway or even intubation with mechanical ventilation may be required in order to get an accurate assessment of pulmonary vascular resistance. If pulmonary vascular disease is suspected or confirmed, administration of 100% oxygen or inhaled nitric oxide is warranted to assess pulmonary vascular reactivity.

Contrast injection

A left ventricular injection is performed to rule out ventricular level shunting, determine the degree of AV valve regurgitation, and assess the left ventricular outflow tract for evidence of obstruction. Goose-neck deformity of the left ventricular outflow tract is classic for endocardial septal defects, including ostium primum ASDs.

A right upper pulmonary vein contrast injection allows visualization of the ostium primum ASD and assesses for additional ASDs. A right ventricular injection delineates the right ventricular outflow tract and pulmonary arteries, but is not necessary routinely.

Aortic or pulmonary artery injections may be warranted if patent ductus arteriosus, coarctation of the aorta, or anomalous pulmonary venous connections are suspected. Pulmonary arterial wedge angiography may be indicated in the patient with suspected pulmonary vascular obstructive disease.

Previous
 
 
Contributor Information and Disclosures
Author

Shannon M Rivenes, MD Assistant Professor, Department of Pediatrics, Division of Pediatric Cardiology, Texas Children’s Hospital and Baylor College of Medicine

Shannon M Rivenes, MD is a member of the following medical societies: Alpha Omega Alpha, American Academy of Pediatrics, American College of Cardiology, American Heart Association, American Society of Echocardiography

Disclosure: Nothing to disclose.

Specialty Editor Board

Mary L Windle, PharmD Adjunct Associate Professor, University of Nebraska Medical Center College of Pharmacy; Editor-in-Chief, Medscape Drug Reference

Disclosure: Nothing to disclose.

Alvin J Chin, MD Emeritus Professor of Pediatrics, University of Pennsylvania School of Medicine

Alvin J Chin, MD is a member of the following medical societies: American Association for the Advancement of Science, Society for Developmental Biology, American Heart Association

Disclosure: Nothing to disclose.

Chief Editor

P Syamasundar Rao, MD Professor of Pediatrics and Medicine, Division of Cardiology, Emeritus Chief of Pediatric Cardiology, University of Texas Medical School at Houston and Children's Memorial Hermann Hospital

P Syamasundar Rao, MD is a member of the following medical societies: American Academy of Pediatrics, American Pediatric Society, American College of Cardiology, American Heart Association, Society for Cardiovascular Angiography and Interventions, Society for Pediatric Research

Disclosure: Nothing to disclose.

Additional Contributors

Paul M Seib, MD Associate Professor of Pediatrics, University of Arkansas for Medical Sciences; Medical Director, Cardiac Catheterization Laboratory, Co-Medical Director, Cardiovascular Intensive Care Unit, Arkansas Children's Hospital

Paul M Seib, MD is a member of the following medical societies: American Academy of Pediatrics, American College of Cardiology, American Heart Association, Arkansas Medical Society, International Society for Heart and Lung Transplantation, Society for Cardiovascular Angiography and Interventions

Disclosure: Nothing to disclose.

References
  1. Rana MS, Theveniau-Ruissy M, De Bono C, et al. Tbx1 coordinates addition of posterior second heart field progenitor cells to the arterial and venous poles of the heart. Circ Res. 2014 Oct 10. 115(9):790-9. [Medline].

  2. Sinha R, Thangaswamy CR, Muthiah T, Chandra P, Subramaniam R. Prolonged postoperative desaturation in a child with Down syndrome and atrial septal defect. Indian J Anaesth. 2011 Nov. 55(6):608-10. [Medline]. [Full Text].

  3. Najm HK, Williams WG, Chuaratanaphong S, et al. Primum atrial septal defect in children: early results, risk factors, and freedom from reoperation. Ann Thorac Surg. 1998 Sep. 66(3):829-35. [Medline].

  4. Michielon G, Stellin G, Rizzoli G, Milanesi O, Rubino M, Moreolo GS, et al. Left atrioventricular valve incompetence after repair of common atrioventricular canal defects. Ann Thorac Surg. 1995 Dec. 60(6 Suppl):S604-9. [Medline].

  5. Stulak JM, Burkhart HM, Dearani JA, et al. Reoperations after repair of partial atrioventricular septal defect: a 45-year single-center experience. Ann Thorac Surg. 2010 May. 89(5):1352-9. [Medline].

  6. Bergin ML, Warnes CA, Tajik AJ, Danielson GK. Partial atrioventricular canal defect: long-term follow-up after initial repair in patients > or = 40 years old. J Am Coll Cardiol. 1995 Apr. 25(5):1189-94. [Medline].

  7. Kaza AK, Colan SD, Jaggers J, et al. Surgical interventions for atrioventricular septal defect subtypes: the pediatric heart network experience. Ann Thorac Surg. 2011 Oct. 92(4):1468-75; discussion 1475. [Medline]. [Full Text].

  8. Aeba R, Kudo M, Okamoto K, Yozu R. Bridging annuloplasty for left atrioventricular valve of partial atrioventricular septal defect. Ann Thorac Surg. 2012 May. 93(5):e137-9. [Medline].

  9. Morris CD, Reller MD, Menashe VD. Thirty-year incidence of infective endocarditis after surgery for congenital heart defect. JAMA. 1998 Feb 25. 279(8):599-603. [Medline].

  10. Gil-Jaurena JM, Zabala JI, Conejo L, Cuenca V, Picazo B, Jiménez C, et al. Minimally invasive pediatric cardiac surgery. Atrial septal defect closure through axillary and submammary approaches. Rev Esp Cardiol. 2011 Mar. 64(3):208-12. [Medline].

  11. Murashita T, Kubota T, Oba J, et al. Left atrioventricular valve regurgitation after repair of incomplete atrioventricular septal defect. Ann Thorac Surg. 2004 Jun. 77(6):2157-62. [Medline].

  12. Agny M, Cobanoglu A. Repair of Partial Atrioventricular Septal Defect in Children Less than Five Years of Age: Late Results. Ann Thorac Surg. 1999 May. 67(5):1412-4. [Medline].

  13. Arky, Ronald. Physicians' Desk Reference. 52nd ed. Montvale, NJ: Medical Economics Co Inc; 1998. 784-7, 1051-1062, 1219-1221.

  14. Castaneda AR, Jonas RA, Mayer JE. Atrioventricular canal defect. Cardiac Surgery of the Neonate and Infant. 1994. 167-86.

  15. Cheitlin MD, Douglas PS, Parmley WW. 26th Bethesda conference: recommendations for determining eligibility for competition in athletes with cardiovascular abnormalities. Task Force 2: acquired valvular heart disease. J Am Coll Cardiol. 1994 Oct. 24(4):874-80. [Medline].

  16. Del Nido PJ, Bichell DP. Minimal-access surgery for congenital heart defects. Semin Thorac Cardiovasc Surg Pediatr Card Surg Annu. 1998. 1():75-80. [Medline].

  17. Garson A Jr, Bricker JT, Fisher DJ. The Science and Practice of Pediatric Cardiology. Williams & Wilkins; 1998. 2nd ed: 1158-179.

  18. Giamberti A, Mazzera E, Di Chiara L, Ferretti E, Pasquini L, Di Donato RM. Right submammary minithoracotomy for repair of congenital heart defects. Eur J Cardiothorac Surg. 2000 Dec. 18(6):678-82. [Medline].

  19. Gilman AG, Goodman LS, Nies AS. Goodman and Gilman's The Pharmacological Basis of Therapeutics. 8th ed. 1990. 721-5, 749-63, 814-839.

  20. Graham TP Jr, Bricker JT, James FW, Strong WB. 26th Bethesda conference: recommendations for determining eligibility for competition in athletes with cardiovascular abnormalities. Task Force 1: congenital heart disease. J Am Coll Cardiol. 1994 Oct. 24(4):867-73. [Medline].

  21. Kaur A, Srivastava S, Lytrivi ID, Nguyen K, Lai WW, Parness IA. Echocardiographic evaluation and surgical implications of common atrioventricular canal defects with absent or diminutive ostium primum defect. Am J Cardiol. 2008 Jun 1. 101(11):1648-51. [Medline].

  22. Lange A, Mankad P, Walayat M, et al. Transthoracic three-dimensional echocardiography in the preoperative assessment of atrioventricular septal defect morphology. Am J Cardiol. 2000 Mar 1. 85(5):630-5. [Medline].

  23. Marino B, Digilio MC, Toscano A, et al. Congenital heart diseases in children with Noonan syndrome: An expanded cardiac spectrum with high prevalence of atrioventricular canal. J Pediatr. 1999 Dec. 135(6):703-6. [Medline].

  24. Perloff JK. The Clinical Recognition of Congenital Heart Disease. 4th ed. WB Saunders; 1994. 349-80.

  25. Pretre R, Dave H, Kadner A, Bettex D, Turina MI. Direct closure of the septum primum in atrioventricular canal defects. J Thorac Cardiovasc Surg. 2004 Jun. 127(6):1678-81. [Medline].

  26. Sadler TW. Langman's Medical Embryology. 5th ed. Baltimore, MD: Williams & Wilkins; 1985. 176-84.

  27. Snider AR, Serwer GA, Ritter SB. Echocardiography in Pediatric Heart Disease. 2nd ed. Harcourt Health Sciences Group; 1997. 277-89.

  28. Zanchetta M, Rigatelli G, Pedon L, et al. Role of intracardiac echocardiography in atrial septal abnormalities. J Interv Cardiol. 2003 Feb. 16(1):63-77. [Medline].

 
Previous
Next
 
ECG from a patient with a partial atrioventricular septal defect. The PR interval is mildly prolonged. Left axis deviation with Q waves in leads I and aVL are present, consistent with a counterclockwise loop in the frontal plane. Right atrial enlargement and an rsR' pattern in the right chest leads also are noted.
Two-dimensional, apical, 4-chamber echocardiogram of a partial atrioventricular (AV) canal defect. The asterisk (*) delineates an area of dropout in the inferior atrial septum at the site of the primum atrial septal defect. The AV valves are separate but aligned at the same horizontal level, consistent with a 2-orifice common AV valve. In systole, the medial leaflets of the right- and left-sided AV valves demonstrate attachments to the crest of the interventricular septum, allowing no ventricular level shunting. RA = Right atrium; LA = Left atrium; RV = Right ventricle; LV = Left ventricle.
Gross pathology specimen viewed from the opened left atrium and left ventricle, demonstrating a partial atrioventricular (AV) canal defect. An ostium primum atrial septal defect (ASD) marked by an asterisk (*) is visualized in the inferior aspect of the interatrial septum. An ostium secundum ASD marked by 2 asterisks (**) is also noted. The mitral valve is cleft and the leaflets are thickened and rolled, suggestive of chronic mitral regurgitation. LA = Left atrium; LV = Left ventricle; MV = Mitral valve.
 
 
 
All material on this website is protected by copyright, Copyright © 1994-2016 by WebMD LLC. This website also contains material copyrighted by 3rd parties.