Close
New

Medscape is available in 5 Language Editions – Choose your Edition here.

 

Myofascial Pain in Athletes Treatment & Management

  • Author: Auri Bruno-Petrina, MD, PhD; Chief Editor: Sherwin SW Ho, MD  more...
 
Updated: Oct 07, 2015
 

Acute Phase

Rehabilitation Program

Physical Therapy

Effective treatment of an MPS caused by TrPs usually involves more than simply applying a procedure to TrPs.[9, 5, 10] Often, it is necessary to consider and deal with the cause that activated the TrPs, to identify and correct any perpetuating factors (which often are different than what activated the TrPs), and to help the patient restore and maintain normal muscle function. Common misconceptions about the treatment of TrPs include the following:

  • Simply treating the TrP should be sufficient, especially if the stress that activated the TrP is not recurrent and if no perpetuating factors are present.
    • In this case, the TrP is likely to be reactivated by the same stress.
    • Ignoring perpetuating factors invites recurrence. After the TrPs have persisted for some time, failure to retrain the muscle to normal function or failure to reestablish its full-stretch range of motion results in a degree of persistent motor dysfunction.
  • The pain cannot be as severe as the patient says and must be largely psychogenic.
    • The patients are trying to communicate their degree of pain. Believe them. The pain feels severe to them. Patients in a general medical practice rated their pain as severe as or more severe than pain from other causes such as pharyngitis, cystitis, angina, and herpes zoster.
    • An appreciable amount of the pain reported by many patients with fibromyalgia comes from their TrPs. The pain of fibromyalgia rates fully as severe as the pain of rheumatoid arthritis. It is severe enough to cause central nervous system changes characteristic of chronic pain.
    • Because of their chronic lip and fibromyalgia pain, these patients often develop pain behaviors that tend to reinforce dysfunction and further pain. Many patients experience grievous and needless degree and duration of pain, because a series of clinicians unacquainted with MTrPs erroneously (covertly if not overtly) diagnosed a psychogenic condition.
  • MPSs are self-limiting and will cure themselves.
    • An acute uncomplicated TrP activated by an unusual activity or muscle overload can revert spontaneously to a latent TrP within 1 or 2 weeks, if the muscle is not overstressed (used within tolerance, which may be limited) and if no perpetuating factors are present. Otherwise, if the acute syndrome is not properly managed, it evolves needlessly into a chronic MPS.
  • Relief of pain by treatment of skeletal muscles for MTrPs rules out serious visceral disease.
    • Because of the referred pain nature of visceral pain, application of Vapo coolant spray or infiltration of a local anesthetic into the somatic reference zone can temporarily relieve the pain of myocardial infarction, angina, and acute abdominal disease with no effect on the visceral pathology.

Rehabilitation program: The treatment approaches include the use of simple muscle stretch, augmented muscle stretch, post-isometric relaxation, reciprocal inhibition, slow exhalation, eye movement, TrP pressure release, massage, range of motion, heat, ultrasound, high-voltage galvanic stimulation, drug treatment, biofeedback, and new injection techniques.[4]

Physical therapy includes simple muscle stretch, augmented muscle stretch, post-isometric relaxation, reciprocal inhibition, slow exhalation, eye movement, TrP pressure release, massage, range of motion, heat, ultrasound, and high-voltage galvanic stimulation.[4, 11, 12]

Medical Issues/Complications

Table 2. Myofascial Trigger Points Mistakenly Diagnosed as Other Conditions (Open Table in a new window)

Initial Diagnosis TrPs
Angina pectoris, atypical Pectoralis major
Appendicitis Lower rectus abdominis
Atypical facial neuralgia Masseter, temporalis, sternal division of the sternocleidomastoid, upper trapezius
Atypical migraine Sternocleidomastoid, temporalis, posterior cervical
Back pain, middle Upper rectus abdominis, thoracic paraspinals
Back pain, low Lower rectus abdominis, thoracolumbar paraspinals
Bicipital tendinitis Long head of the biceps brachii
Chronic abdominal wall pain Abdominal muscles
Dysmenorrhea Lower rectus abdominis
Earache, enigmatic Deep masseter
Epicondylitis Wrist extensors, supinator, triceps brachii
Frozen shoulder Subscapularis
Myofascial pain dysfunction Masticatory muscles
Occipital headache Posterior cervicals
Post-therapeutic neuralgia Serratus anterior, intercostals
Radiculopathy, C6 Pectoralis minor, scalenes
Scapulocostal syndrome Scalenes, middle trapezius, levator scapulae
Subacromial bursitis Middle deltoid
Temporomandibular joint disorder Masseter, lateral pterygoid
Tennis elbow Finger extensors, supinator
Tension headache Sternocleidomastoid, masticatory, posterior cervicals, suboccipital, upper trapezius
Thoracic outlet syndrome Scalenes, subscapularis, pectoralis minor and major, latissimus dorsi, teres major

Table 3. Differences in Clinical Features that Distinguish Myofascial Pain due to TrPs from Fibromyalgia (Open Table in a new window)

Feature Myofascial Pain (TrPs) Fibromyalgia
Female-to-male ratio 1:1 4-9:1
Pain Local or regional Widespread, general
Tenderness Focal Widespread
Muscle Feels tense (taut bands) Feels soft and doughy
Motion Restricted range of motion Hypermobility
Examination Examine for TrPs Examine for tender points

 

See the list below:

  • Complications of injections
    • Pneumothorax by aiming the needle at an intercostal space: The only exception is when the intercostal muscles must be injected. This should be performed with great care.
    • The location of the needle tip can be misjudged readily when using a long slender needle. Furthermore, the needle should be inserted straight, avoiding any side pressure that might bend it, deflecting the tip an unknown distance to one side.
    • It is especially important to avoid using a needle with a burr at the tip because it causes unnecessary bleeding. When the tip of a disposable needle contacts bone, the impact frequently curls the tip to produce a fishhook burr that feels scratchy and drags as the needle is drawn through tissues.
  • Contraindications to TrP injections
    • Patients on anticoagulation therapy
    • If the patient has taken aspirin within 3 days of injection
    • Tobacco smokers, unless they have stopped smoking and have taken at least 500 mg of timed-release vitamin C for 3 days prior to injection
    • Patients who have an inordinate fear of needles
    • Patients should avoid strenuous activity and sports for 10 days.

Consultations

The clinical importance of MTrPs to practitioners has been described in the literature for acupuncturists, anesthesiologists, chronic pain managers, dentists, family practitioners, gynecologists, neurologists, nurses, orthopedic surgeons, pediatricians, physical therapists, physiatrists, rheumatologists, and veterinarians.

Other Treatment

Infants have been observed with point tenderness of the rectus abdominis muscle and colic, both of which were relieved by sweeping a stream of Vapo coolant over the muscle, which helps to inactivate MTrPs.

The clinical effectiveness of botulinum A toxin injection for the treatment of MTrPs helps to substantiate dysfunctional endplates as an essential part of the pathophysiology of TrPs (see the images below).[13, 14, 15, 16, 17] This toxin specifically acts only on the neuromuscular junction, effectively denervating that muscle cell.[18]

Myofascial pain in athletes. Mechanism of botulinu Myofascial pain in athletes. Mechanism of botulinum toxin type A.
Myofascial pain in athletes. Binding of neuromuscu Myofascial pain in athletes. Binding of neuromuscular transmission with botulinum toxin type A, which binds the motor nerve terminal.
Myofascial pain in athletes. After botulinum toxin Myofascial pain in athletes. After botulinum toxin type A is internalized, the light chain of the toxin molecule is released into the cytoplasm of the nerve terminal.
Myofascial pain in athletes. Botulinum toxin type Myofascial pain in athletes. Botulinum toxin type A blocks acetylcholine by cleaving a cytoplasmic protein on the cell membrane.
Myofascial pain in athletes. After the botulinum t Myofascial pain in athletes. After the botulinum toxin type A exerts its clinical toxic effect, a nerve sprout eventually establishes a new neuromuscular junction, and muscle activity gradually returns. However, new research findings suggest that this new nerve sprout retracts and the original junction returns to functionality.
Myofascial pain in athletes. After the clinical to Myofascial pain in athletes. After the clinical toxic effect of botulinum toxin type A occurs, axon sprouting and muscle fiber reinnervation terminate the clinical effect of the toxin, which results in the reestablishment of neuromuscular transmission.

See the list below:

  • Sequence of steps when stretching and spraying any muscle for MTrPs (see the image below) [19]
    Myofascial pain in athletes. Sequence of steps to Myofascial pain in athletes. Sequence of steps to use when stretching and spraying any muscle for myofascial trigger points.
    See the list below:
    • The patient is supported in a comfortable relaxed position.
    • One end of the muscle is anchored.
    • Skin is sprayed with repeated parallel sweeps of the Vapo coolant over the length of the muscle in the direction of pain pattern.
    • After the first sweep of spray, pressure is applied to take up the slack in the muscle and is continued as additional sweeps of spray are applied.
    • Sweeps of the spray are extended to cover the referred pain pattern.
    • Steps 3, 4, and 5 may be repeated 2 or 3 times until the skin becomes cold to the touch or when the range of motion reaches maximum.
  • Technique of spray and stretch
    • For example, treatment for right levator scapulae TrPs; the direction and pattern of the Vapo coolant spray follows the muscle fibers (see the image below).
      Myofascial pain in athletes. Schematic drawing sho Myofascial pain in athletes. Schematic drawing showing how the jet stream of Vapo coolant is applied.
    • During the distraction of the spray, the operator presses the patient's head forward and to the opposite side, while using the elbow to press the patient's shoulder down and back. Similar techniques are applied to most other TrPs. The key ingredient is the prolonged stretch of the affected muscle.
    • Unidirectional sweeps cover, first, parallel lines of skin over those muscle fibers that are stretched the tightest, then over the rest of the muscle and its pain pattern. Sequential sweeps of spray should follow the direction of the muscle fibers and progress toward the referred pain zone.
  • TrP injection
    • To prevent bleeding, the fingers of the palpating hand should be spread apart, maintaining tension on the skin to reduce the likelihood of subcutaneous bleeding where the needle has penetrated (see the image below). Also, during the injection, the fingers exert pressure around the needle tip to provide homeostasis in deeper tissues. When the angle of the needle is changed, the direction of pressure changes.
      Myofascial pain in athletes. Schematic top view of Myofascial pain in athletes. Schematic top view of 2 approaches to the flat injection of a trigger point area in a palpable taut band. Injection away from the fingers (A) and injection toward the fingers (B).
    • The physician should avoid inserting the needle to the hub where the needle is most likely to break off. Some additional depth of penetration can be obtained safely by indenting the skin and subcutaneous tissues with a finger beside the needle as illustrated in the image below.
      Myofascial pain in athletes. C. Z. Hong's techniqu Myofascial pain in athletes. C. Z. Hong's technique. Finger pressure beside the needle is used to indent the skin, subcutaneous, and fat tissues so that the needle can reach the trigger point in a muscle that would be inaccessible otherwise.
    • The importance of distinguishing between central TrPs, ie, in the central portion of the muscle belly and attachment TrPs when injecting, is illustrated in the image below.
      Myofascial pain in athletes. Diagrammatic represen Myofascial pain in athletes. Diagrammatic representation of pre-injection sites (open circles) and injection sites (solid circles) of local anesthetic to the trigger point. The enclosed stippled area represents the taut band. This diagram distinguishes the central trigger point within the large broken circle from the attachment trigger points located at the myotendinous junction and at the attachment of the tendon to the bone. Each of these 3 trigger point regions can be identified by their individual spot tenderness and anatomical locations. No rationale is apparent for injecting the part of the taut band that lies between the central trigger point and the attachment trigger point (solid circles numbers 7-10).
  • The increased capillary fragility characteristic of a low serum vitamin C level can cause excessive bleeding in muscles injected for TrPs. Capillary hemorrhage augments postinjection soreness and leads to unsightly ecchymoses. A frequent source of increased bleeding due to low vitamin C is tobacco. Mega-dose vitamin C therapy daily for 1 week should correct this deficiency. At least 500 mg of timed-release vitamin C 3 times daily is recommended for a minimum of 3 days prior to injection of TrPs. A daily dose of aspirin increases the susceptibility to bleeding. The patient should take no aspirin for 3 days before TrP injection or needling. [20]
Next

Recovery Phase

Rehabilitation Program

Physical Therapy

See Acute Phase Physical Therapy.

Occupational Therapy

See Acute Phase Physical Therapy.

Previous
Next

Maintenance Phase

Rehabilitation Program

Physical Therapy

See above.

Previous
 
 
Contributor Information and Disclosures
Author

Auri Bruno-Petrina, MD, PhD Physiatrist

Auri Bruno-Petrina, MD, PhD is a member of the following medical societies: American Academy of Physical Medicine and Rehabilitation, Canadian Association of Physical Medicine and Rehabilitation, International Society of Physical and Rehabilitation Medicine

Disclosure: Nothing to disclose.

Specialty Editor Board

Francisco Talavera, PharmD, PhD Adjunct Assistant Professor, University of Nebraska Medical Center College of Pharmacy; Editor-in-Chief, Medscape Drug Reference

Disclosure: Received salary from Medscape for employment. for: Medscape.

Russell D White, MD Clinical Professor of Medicine, Clinical Professor of Orthopedic Surgery, Department of Community and Family Medicine, University of Missouri-Kansas City School of Medicine, Truman Medical Center-Lakewood

Russell D White, MD is a member of the following medical societies: Alpha Omega Alpha, American Academy of Family Physicians, American Association of Clinical Endocrinologists, American College of Sports Medicine, American Diabetes Association, American Medical Society for Sports Medicine

Disclosure: Nothing to disclose.

Chief Editor

Sherwin SW Ho, MD Associate Professor, Department of Surgery, Section of Orthopedic Surgery and Rehabilitation Medicine, University of Chicago Division of the Biological Sciences, The Pritzker School of Medicine

Sherwin SW Ho, MD is a member of the following medical societies: American Academy of Orthopaedic Surgeons, Arthroscopy Association of North America, Herodicus Society, American Orthopaedic Society for Sports Medicine

Disclosure: Received consulting fee from Biomet, Inc. for speaking and teaching; Received grant/research funds from Smith and Nephew for fellowship funding; Received grant/research funds from DJ Ortho for course funding; Received grant/research funds from Athletico Physical Therapy for course, research funding; Received royalty from Biomet, Inc. for consulting.

Additional Contributors

Anthony J Saglimbeni, MD President, South Bay Sports and Preventive Medicine Associates; Private Practice; Team Internist, San Francisco Giants; Team Internist, West Valley College; Team Physician, Bellarmine College Prep; Team Physician, Presentation High School; Team Physician, Santa Clara University; Consultant, University of San Francisco, Academy of Art University, Skyline College, Foothill College, De Anza College

Anthony J Saglimbeni, MD is a member of the following medical societies: California Medical Association, Santa Clara County Medical Association, Monterey County Medical Society

Disclosure: Received ownership interest from South Bay Sports and Preventive Medicine Associates, Inc for board membership.

References
  1. Simons DG, Mense S. [Diagnosis and therapy of myofascial trigger points]. Schmerz. 2003 Dec. 17(6):419-24.

  2. Travell JG, Simons DG. Myofascial Pain and Dysfunction: The Trigger Point Manual. Baltimore, Md: Lippincott Williams & Wilkins; 1983.

  3. Travell JG, Simons DG. Myofascial Pain and Dysfunction: The Trigger Point Manual. Upper half of Body. 2nd ed. Baltimore, Md: Lippincott Williams & Wilkins; 1999. Vol 1:

  4. Fisher AA. Diagnosis and management of chronic pain in physical medicine and rehabilitation. Ruskin AP, ed. Current Therapy in Physiatry. Philadelphia, Pa: WB Saunders Co; 1984. 123-154.

  5. Thompson JM. The diagnosis and treatment of muscle pain syndromes. Braddom RL, ed. Physical Medicine and Rehabilitation. Philadelphia, Pa: WB Saunders Co; 1996.

  6. Ballyns JJ, Shah JP, Hammond J, Gebreab T, Gerber LH, Sikdar S. Objective sonographic measures for characterizing myofascial trigger points associated with cervical pain. J Ultrasound Med. 2011 Oct. 30(10):1331-40. [Medline].

  7. Gerwin RD. Diagnosis of myofascial pain syndrome. Phys Med Rehabil Clin N Am. 2014 May. 25 (2):341-55. [Medline].

  8. Hubbard DR, Berkoff GM. Myofascial trigger points show spontaneous needle EMG activity. Spine. 1993 Oct 1. 18(13):1803-7. [Medline].

  9. Hong CZ. Treatment of myofascial pain syndrome. Curr Pain Headache Rep. Oct/2006. 5:345-9.

  10. Walsh NE, Dimitru D, Schoenfeld LS, Ramamurthy S. Treatment of the patient with chronic pain. DeLisa JA, ed. Rehabilitation Medicine: Principles and Practice. 3rd ed. Philadelphia, Pa: Lippincott-Raven; 1998.

  11. Sarrafzadeh J, Ahmadi A, Yassin M. The Effects of Pressure Release, Phonophoresis of Hydrocortisone, and Ultrasound on Upper Trapezius Latent Myofascial Trigger Point. Arch Phys Med Rehabil. 2011 Oct 7. [Medline].

  12. Rha DW, Shin JC, Kim YK, Jung JH, Kim YU, Lee SC. Detecting local twitch responses of myofascial trigger points in the lower-back muscles using ultrasonography. Arch Phys Med Rehabil. 2011 Oct. 92(10):1576-1580.e1. [Medline].

  13. Acquadro MA, Borodic GE. Treatment of myofascial pain with botulinum A toxin. Anesthesiology. 1994 Mar. 80(3):705-6. [Medline].

  14. Cheshire WP, Abashian SW, Mann JD. Botulinum toxin in the treatment of myofascial pain syndrome. Pain. 1994 Oct. 59(1):65-9. [Medline].

  15. Scott AB. Forward. Jankovic J, Hallet M, eds. Therapy with Botulinum Toxin. New York, NY: Marcel Dekker Inc; 1994. vii-ix.

  16. Nicol AL, Wu II, Ferrante FM. Botulinum toxin type a injections for cervical and shoulder girdle myofascial pain using an enriched protocol design. Anesth Analg. 2014 Jun. 118 (6):1326-35. [Medline]. [Full Text].

  17. Zhou JY, Wang D. An update on botulinum toxin A injections of trigger points for myofascial pain. Curr Pain Headache Rep. 2014 Jan. 18 (1):386. [Medline].

  18. Coffield JA, Considine RV, Simpson LL. The site and mechanism of action of botulinum neurotoxin. Jankovic J, Hallet M, eds. Therapy with Botulinum Toxin. New York, NY: Marcel Dekker Inc; 1994. 3-13.

  19. Travell JG. Ethylchloride spray for painful muscle spasm. Arch Phys Med Rehabil. 1952. 33:291-8.

  20. Huang YT, Lin SY, Neoh CA, Wang KY, Jean YH, Shi HY. Dry needling for myofascial pain: prognostic factors. J Altern Complement Med. 2011 Aug. 17(8):755-62. [Medline].

  21. Annaswamy TM, De Luigi AJ, O'Neill BJ, Keole N, Berbrayer D. Emerging Concepts in the Treatment of Myofascial Pain: A Review of Medications, Modalities, and Needle-based Interventions. PM R. 2011 Oct. 3(10):940-61. [Medline].

  22. Schneider MJ. Tender points/fibromyalgia vs. trigger points/myofascial pain syndrome: a need for clarity in terminology and differential diagnosis. J Manipulative Physiol Ther. 1995 Jul-Aug. 18(6):398-406. [Medline].

  23. Simons AG. Muscular pain syndromes. Fricton JR, Awad FA, eds. Advances in Pain Research and Therapy. Myofascial Pain and Fibromyalgia. New York, NY: Raven Press; 1990. Vol 17: 18.

  24. Rosen NB. Myofascial pain: the great mimicker and potentiator of other diseases in the performing artist. Md Med J. 1993 Mar. 42(3):261-6. [Medline].

  25. Lambert CM. Hand and upper limb problems of instrumental musicians. Br J Rheumatol. 1992 Apr. 31(4):265-71. [Medline].

  26. Charness ME, Parry GJ, Markison RE, et al. Entrapment neuropathies in musicians. Neurology. 1985. 35(suppl 1):74.

  27. Lederman RJ. Nerve entrapment syndromes in instrumental musicians. Med Probl Perform Art. 1986. 1:45-8.

  28. Maffulli N, Maffulli F. Transient entrapment neuropathy of the posterior interosseous nerve in violin players. J Neurol Neurosurg Psychiatry. 1991 Jan. 54(1):65-7. [Medline].

  29. Gregory PL, Biswas AC, Batt ME. Musculoskeletal problems of the chest wall in athletes. Sports Med. 2002. 4:235-50.

  30. Gregory PL, Biswas AC, Batt ME. Musculoskeletal problems of the chest wall in athletes. Sports Med. 2002. 32(4):235-50.

  31. Fredericson M, Weir A. Practical management of iliotibial band friction syndrome in runners. Clin J Sport Med. 2006 May. 3:261-8.

  32. Fredericson M, Weir A. Practical management of iliotibial band friction syndrome in runners. Clin J Sport Med. 2006 May. 16(3):261-8.

  33. Hatheway CL, Dang C. Immunogenicity of the neurotoxins of Clostridium botulinum. Jankovic J, Hallet M, eds. Therapy with Botulinum Toxin. New York, NY: Marcel Dekker; 1994. 93-107.

  34. Hong CZ. Treatment of myofascial pain syndrome. Curr Pain Headache Rep. 2006 Oct. 10(5):345-9.

  35. Reiter RC, Gambone JC. Nongynecologic somatic pathology in women with chronic pelvic pain and negative laparoscopy. J Reprod Med. 1991 Apr. 36(4):253-9. [Medline].

  36. Wainapel SF, Cole IL. The not so magic flute: two cases of distal ullnar nerve entrapment. Med Probl Perform Art. 1988. 3:63-5.

 
Previous
Next
 
Myofascial pain in athletes. Schematic of a trigger point complex of a muscle in longitudinal section.A: The central trigger point (CTrP) in the endplate zone contains numerous electrically active loci and numerous contraction knots. A taut band of muscle fibers extends from the trigger point to the attachment at each end of the involved fibers. The sustained tension that the taut band exerts on the attachment tissues can induce a localized enthesopathy that is identified as an attachment trigger point (ATrP).B: Enlarged view of part of the CTrP shows the distribution of 5 contraction knots. The vertical lines in each muscle fiber identify the relative spacing of its striations. The space between 2 striations corresponds to the length of one sarcomere. The sarcomeres within one of these enlarged segments (ie, contraction knot) of a muscle fiber are markedly shorter and wider than the sarcomeres in the neighboring normal muscle fibers, which are free of contraction knots.
Myofascial pain in athletes. Cross-sectional drawing shows flat palpation of a taut band and its trigger point.Left: Skin pushed to one side to begin palpation (A). The fingertip slides across muscle fibers to feel the cord-line texture of the taut band rolling beneath it (B). The skin is pushed to other side at completion of movement. This same movement performed vigorously is snapping palpation (C).Right: Muscle fibers surrounded by the thumb and fingers in a pincer grip (A). The hardness of the taut band is felt clearly as it is rolled between the digits (B). The palpable edge of the taut band is sharply defined as it escapes from between the fingertips, often with a local twitch response (C).
Myofascial pain in athletes. Longitudinal schematic drawing of taut bands, myofascial trigger points, and a local twitch response. A: Palpation of a taut band (straight lines) among normally slack, relaxed muscle fibers (wavy lines). B: Rolling the band quickly under the fingertip (snapping palpation) at the trigger point often produces a local twitch response that usually is seen most clearly as skin movement between the trigger point and the attachment of the muscle fibers.
Myofascial pain in athletes. Sequence of steps to use when stretching and spraying any muscle for myofascial trigger points.
Myofascial pain in athletes. Schematic drawing showing how the jet stream of Vapo coolant is applied.
Myofascial pain in athletes. Cross-sectional schematic drawing shows flat palpation to localize and hold the trigger point for injection. A and B show use of alternate pressure between 2 fingers to confirm the location of the palpable module of the trigger point. C shows positioning the trigger point half way between the fingertips to keep it from sliding to one side during the injection.
Myofascial pain in athletes. Schematic top view of 2 approaches to the flat injection of a trigger point area in a palpable taut band. Injection away from the fingers (A) and injection toward the fingers (B).
Myofascial pain in athletes. C. Z. Hong's technique. Finger pressure beside the needle is used to indent the skin, subcutaneous, and fat tissues so that the needle can reach the trigger point in a muscle that would be inaccessible otherwise.
Myofascial pain in athletes. Diagrammatic representation of pre-injection sites (open circles) and injection sites (solid circles) of local anesthetic to the trigger point. The enclosed stippled area represents the taut band. This diagram distinguishes the central trigger point within the large broken circle from the attachment trigger points located at the myotendinous junction and at the attachment of the tendon to the bone. Each of these 3 trigger point regions can be identified by their individual spot tenderness and anatomical locations. No rationale is apparent for injecting the part of the taut band that lies between the central trigger point and the attachment trigger point (solid circles numbers 7-10).
Myofascial pain in athletes. Mechanism of botulinum toxin type A.
Myofascial pain in athletes. Binding of neuromuscular transmission with botulinum toxin type A, which binds the motor nerve terminal.
Myofascial pain in athletes. After botulinum toxin type A is internalized, the light chain of the toxin molecule is released into the cytoplasm of the nerve terminal.
Myofascial pain in athletes. Botulinum toxin type A blocks acetylcholine by cleaving a cytoplasmic protein on the cell membrane.
Myofascial pain in athletes. After the botulinum toxin type A exerts its clinical toxic effect, a nerve sprout eventually establishes a new neuromuscular junction, and muscle activity gradually returns. However, new research findings suggest that this new nerve sprout retracts and the original junction returns to functionality.
Myofascial pain in athletes. After the clinical toxic effect of botulinum toxin type A occurs, axon sprouting and muscle fiber reinnervation terminate the clinical effect of the toxin, which results in the reestablishment of neuromuscular transmission.
Table 1. Prevalence of Myofascial Pain
Region Practice Number Studied Prevalence of Myofascial Pain, %
General Medical 172 30
General Pain medical center 96 93
General Comprehensive pain center 283 85
Craniofacial Head and neck pain clinic 164 55
Lumbogluteal Orthopedic clinic 97 21
Table 2. Myofascial Trigger Points Mistakenly Diagnosed as Other Conditions
Initial Diagnosis TrPs
Angina pectoris, atypical Pectoralis major
Appendicitis Lower rectus abdominis
Atypical facial neuralgia Masseter, temporalis, sternal division of the sternocleidomastoid, upper trapezius
Atypical migraine Sternocleidomastoid, temporalis, posterior cervical
Back pain, middle Upper rectus abdominis, thoracic paraspinals
Back pain, low Lower rectus abdominis, thoracolumbar paraspinals
Bicipital tendinitis Long head of the biceps brachii
Chronic abdominal wall pain Abdominal muscles
Dysmenorrhea Lower rectus abdominis
Earache, enigmatic Deep masseter
Epicondylitis Wrist extensors, supinator, triceps brachii
Frozen shoulder Subscapularis
Myofascial pain dysfunction Masticatory muscles
Occipital headache Posterior cervicals
Post-therapeutic neuralgia Serratus anterior, intercostals
Radiculopathy, C6 Pectoralis minor, scalenes
Scapulocostal syndrome Scalenes, middle trapezius, levator scapulae
Subacromial bursitis Middle deltoid
Temporomandibular joint disorder Masseter, lateral pterygoid
Tennis elbow Finger extensors, supinator
Tension headache Sternocleidomastoid, masticatory, posterior cervicals, suboccipital, upper trapezius
Thoracic outlet syndrome Scalenes, subscapularis, pectoralis minor and major, latissimus dorsi, teres major
Table 3. Differences in Clinical Features that Distinguish Myofascial Pain due to TrPs from Fibromyalgia
Feature Myofascial Pain (TrPs) Fibromyalgia
Female-to-male ratio 1:1 4-9:1
Pain Local or regional Widespread, general
Tenderness Focal Widespread
Muscle Feels tense (taut bands) Feels soft and doughy
Motion Restricted range of motion Hypermobility
Examination Examine for TrPs Examine for tender points
Previous
Next
 
 
 
 
 
All material on this website is protected by copyright, Copyright © 1994-2016 by WebMD LLC. This website also contains material copyrighted by 3rd parties.