Close
New

Medscape is available in 5 Language Editions – Choose your Edition here.

 

Pediatric Supravalvar Aortic Stenosis Clinical Presentation

  • Author: Anita Krishnan, MD; Chief Editor: Howard S Weber, MD, FSCAI  more...
 
Updated: Aug 26, 2015
 

History

Symptoms caused by SVAS usually develop in childhood. Rarely, symptoms may develop in infancy; in some cases, symptoms develop in the second or third decade of life.

Most pediatric patients present because of a heart murmur or the features of Williams syndrome. Patients with Williams syndrome may also develop systemic hypertension and involvement of joints, peripheral pulmonary artery stenosis, coarctation of aorta, and mitral insufficiency.[13]

Dyspnea on exertion, angina, and syncope develop in the course of the disease if SVAS is untreated. These symptoms indicate at least a moderate degree of LVOT obstruction. Because of the coronary artery involvement, angina may arise early and more often than in other obstructive LVOT lesions. Because of the risk of sudden death in SVAS, the development of angina and syncope should prompt immediate investigation.

Next

Physical Examination

The physical examination focuses on upper extremity pulses, the precordium, heart sounds, and heart murmurs.

Asymmetrical upper extremities pulses

Discrepancies between carotid pulsations and upper extremity pulses and blood pressure are the characteristic clinical findings in SVAS. The discrepancies occur because the jet of blood flow from SVAS has a preferential trajectory into the brachiocephalic (innominate) artery (ie, Coanda effect).

Precordium

The precordium is usually hyperdynamic, and the apex of the heart is displaced laterally and inferiorly because of ventricular hypertrophy. A thrill in the suprasternal notch is usually felt because of the trajectory of the blood flow jet from SVAS.

Heart sounds

The first heart sound is generally normal. A narrowly split, single, or paradoxically split second heart sound and a fourth heart sound are present in severe SVAS.

Heart murmurs

The characteristic systolic murmur of SVAS is crescendo-decrescendo in shape, low pitched, and best heard at the base of the heart, sited higher than in valvular aortic stenosis. It mainly radiates to the right carotid artery and tends to peak during the last two thirds of ventricular systole if the obstruction is severe.

A high-pitched, short, early diastolic aortic regurgitation murmur is uncommon in SVAS unless the aortic valve has become damaged due to the supravalve obstruction and has become regurgitant.  An ejection click is absent.

Previous
 
 
Contributor Information and Disclosures
Author

Anita Krishnan, MD Assistant Professor of Pediatrics, George Washington University School of Medicine; Attending Physician, Division of Cardiology, Children’s National Medical Center

Disclosure: Nothing to disclose.

Coauthor(s)

Gautam K Singh, MD, , MRCP Professor of Pediatrics, Division of Cardiology, Director of Noninvasive Imaging Research, Co-Director of Echocardiography Laboratory, Washington University in St Louis School of Medicine; Attending Faculty, Department of Pediatrics, Division of Cardiology, St Louis Children's Hospital

Gautam K Singh, MD, , MRCP is a member of the following medical societies: American College of Cardiology, American Heart Association, American Society of Echocardiography, Royal College of Physicians

Disclosure: Nothing to disclose.

Specialty Editor Board

Mary L Windle, PharmD Adjunct Associate Professor, University of Nebraska Medical Center College of Pharmacy; Editor-in-Chief, Medscape Drug Reference

Disclosure: Nothing to disclose.

John W Moore, MD, MPH Professor of Clinical Pediatrics, Section of Pediatic Cardiology, Department of Pediatrics, University of California San Diego School of Medicine; Director of Cardiology, Rady Children's Hospital

John W Moore, MD, MPH is a member of the following medical societies: American Academy of Pediatrics, American College of Cardiology, Society for Cardiovascular Angiography and Interventions

Disclosure: Nothing to disclose.

Chief Editor

Howard S Weber, MD, FSCAI Professor of Pediatrics, Section of Pediatric Cardiology, Pennsylvania State University College of Medicine; Director of Interventional Pediatric Cardiology, Penn State Hershey Children's Hospital

Howard S Weber, MD, FSCAI is a member of the following medical societies: American Academy of Pediatrics, American College of Cardiology, Society for Cardiovascular Angiography and Interventions

Disclosure: Received income in an amount equal to or greater than $250 from: St. Jude Medical.

Additional Contributors

Charles I Berul, MD Professor of Pediatrics and Integrative Systems Biology, George Washington University School of Medicine; Chief, Division of Cardiology, Children's National Medical Center

Charles I Berul, MD is a member of the following medical societies: American Academy of Pediatrics, Heart Rhythm Society, Cardiac Electrophysiology Society, Pediatric and Congenital Electrophysiology Society, American College of Cardiology, American Heart Association, Society for Pediatric Research

Disclosure: Received grant/research funds from Medtronic for consulting.

References
  1. Micale L, Turturo MG, Fusco C, et al. Identification and characterization of seven novel mutations of elastin gene in a cohort of patients affected by supravalvular aortic stenosis. Eur J Hum Genet. 2009 Oct 21. [Medline].

  2. Peterson TA, Todd DB, Edwards JE. Supravalvular aortic stenosis. J Thorac Cardiovasc Surg. 1965 Nov. 50(5):734-41. [Medline].

  3. Edwards JE. Pathology of left ventricular outflow tract obstruction. Circulation. 1965. 31:586-99.

  4. Thistlethwaite PA, Madani MM, Kriett JM, Milhoan K, Jamieson SW. Surgical management of congenital obstruction of the left main coronary artery with supravalvular aortic stenosis. J Thorac Cardiovasc Surg. 2000 Dec. 120(6):1040-6. [Medline].

  5. French JW, Guntheroth WG. An explanation of asymmetric upper extremity blood pressures in supravalvular aortic stenosis: the Coanda effect. Circulation. 1970 Jul. 42(1):31-6. [Medline].

  6. Gersony WM, Hayes CJ, Driscoll DJ, et al. Bacterial endocarditis in patients with aortic stenosis, pulmonary stenosis, or ventricular septal defect. Circulation. 1993 Feb. 87(2 Suppl):I121-6. [Medline].

  7. Wilson W, Taubert KA, Gewitz M, et al. Prevention of infective endocarditis: guidelines from the American Heart Association: a guideline from the American Heart Association Rheumatic Fever, Endocarditis and Kawasaki Disease Committee, Council on Cardiovascular Disease in the Young, and the Council on Clinical Cardiology, Council on Cardiovascular Surgery and Anesthesia, and the Quality of Care and Outcomes Research Interdisciplinary Working Group. J Am Dent Assoc. 2007 Jun. 138(6):739-45, 747-60. [Medline]. [Full Text].

  8. Ewart AK, Morris CA, Atkinson D, et al. Hemizygosity at the elastin locus in a developmental disorder, Williams syndrome. Nat Genet. 1993 Sep. 5(1):11-6. [Medline].

  9. Brown JW, Ruzmetov M, Vijay P, et al. Surgical repair of congenital supravalvular aortic stenosis in children. Eur J Cardiothorac Surg. 2002 Jan. 21(1):50-6. [Medline].

  10. Wren C, Oslizlok P, Bull C. Natural history of supravalvular aortic stenosis and pulmonary artery stenosis. J Am Coll Cardiol. 1990 Jun. 15(7):1625-30. [Medline].

  11. Wessel TR, Arant CB, Olson MB, et al. Relationship of physical fitness vs body mass index with coronary artery disease and cardiovascular events in women. JAMA. 2004 Sep 8. 292(10):1179-87. [Medline].

  12. Bird LM, Billman GF, Lacro RV, et al. Sudden death in Williams syndrome: report of ten cases. J Pediatr. 1996 Dec. 129(6):926-31. [Medline].

  13. Pieles GE, Ofoe V, Morgan GJ. Severe Left Main Coronary Artery Stenosis with Abnormal Branching Pattern in a Patient with Mild Supravalvar Aortic Stenosis and Williams-Beuren Syndrome. Congenit Heart Dis. 2013 May 22. [Medline].

  14. Martin R, Lairez O, Boudou N, Méjean S, Lhermusier T, Dumonteil N, et al. Relation between left ventricular outflow tract obstruction and left ventricular shape in patients with hypertrophic cardiomyopathy: A cardiac magnetic resonance imaging study. Arch Cardiovasc Dis. 2013 Aug-Sep. 106(8-9):440-7. [Medline].

  15. Jureidini SB, Marino CJ, Singh GK, et al. Main coronary artery and coronary ostial stenosis in children: detection by transthoracic color flow and pulsed Doppler echocardiography. J Am Soc Echocardiogr. 2000 Apr. 13(4):255-63. [Medline].

  16. Tani LY, Minich LL, Pagotto LT, Shaddy RE. Usefulness of doppler echocardiography to determine the timing of surgery for supravalvar aortic stenosis. Am J Cardiol. 2000 Jul 1. 86(1):114-6. [Medline].

  17. Sugiyama H, Veldtman GR, Norgard G, Lee KJ, Chaturvedi R, Benson LN. Bladed balloon angioplasty for peripheral pulmonary artery stenosis. Catheter Cardiovasc Interv. 2004 May. 62(1):71-7. [Medline].

  18. Dridi SM, Foucault Bertaud A, Igondjo Tchen S, et al. Vascular wall remodeling in patients with supravalvular aortic stenosis and Williams Beuren syndrome. J Vasc Res. 2005 May-Jun. 42(3):190-201. [Medline].

  19. [Guideline] Bonow RO, Carabello BA, Kanu C, et al. ACC/AHA 2006 guidelines for the management of patients with valvular heart disease: a report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines (writing committee to revise the 1998 Guidelines for the Management of Patients With Valvular Heart Disease): developed in collaboration with the Society of Cardiovascular Anesthesiologists: endorsed by the Society for Cardiovascular Angiography and Interventions and the Society of Thoracic Surgeons. Circulation. 2006 Aug 1. 114(5):e84-231. [Medline].

  20. Kavarana MN, Riley M, Sood V, Ohye RG, Devaney EJ, Bove EL, et al. Extended single-patch repair of supravalvar aortic stenosis: a simple and effective technique. Ann Thorac Surg. 2012 Apr. 93(4):1274-8; discussion 1278-9. [Medline].

  21. Ayoub C, Ranasinghe I, Yiannikas J. Successful negative inotropic treatment of acute left ventricular outflow tract obstruction by elongated mitral valve leaflet. J Clin Ultrasound. 2013 Sep 20. [Medline].

  22. McElhinney DB, Petrossian E, Tworetzky W, Silverman NH, Hanley FL. Issues and outcomes in the management of supravalvar aortic stenosis. Ann Thorac Surg. 2000 Feb. 69(2):562-7. [Medline].

 
Previous
Next
 
Two-dimensional suprasternal echocardiographic image of supravalvar aortic stenosis.
Aortogram of a patient with supravalvar aortic stenosis and dilated sinus of Valsalva.
 
 
 
All material on this website is protected by copyright, Copyright © 1994-2016 by WebMD LLC. This website also contains material copyrighted by 3rd parties.