Close
New

Medscape is available in 5 Language Editions – Choose your Edition here.

 

Truncus Arteriosus Treatment & Management

  • Author: Doff B McElhinney, MD; Chief Editor: Howard S Weber, MD, FSCAI  more...
 
Updated: Jan 14, 2015
 

Medical Care

Medical care before surgical repair depends on the neonate's clinical presentation.

Most neonates with truncus arteriosus display some evidence of congestive heart failure; they are usually treated with digitalis and diuretic medicines.

Intravenous prostaglandin is often administered in patients with truncus arteriosus upon presentation because the differential diagnosis includes numerous anomalies with duct-dependent systemic or pulmonary blood flow. However, it is beneficial only in patients with associated interruption of the aortic arch or aortic coarctation.

Other preoperative medications are not generally indicated, although specific circumstances may dictate afterload reducing agents, inotropic medications, or antiarrhythmics.

Full-term and premature newborns with truncus arteriosus may be at increased risk for necrotizing enterocolitis, either preoperatively or postoperatively, and appropriate evaluation should be undertaken in any newborn exhibiting signs or symptoms of necrotizing enterocolitis.

Next

Surgical Care

Indications

Truncus arteriosus invariably requires operative repair.[11] Symptoms typically develop in the early neonatal period, indicating that complete repair is required at this point.

Techniques

Surgical management of truncus arteriosus has undergone significant evolution over the past 30 years. Complete repair was first performed in 1967, but until neonatal and early infant repair became routine in the 1980s, palliative pulmonary artery banding was common, with complete repair performed at an older age. At most centers, primary complete repair in the neonate and young infant has become the accepted standard.

Currently, surgical management consists of complete primary repair, with closure of the ventricular septal defect, committing the common arterial trunk to the left ventricle, and reconstruction of the right ventricular outflow tract.

In patients with both branch pulmonary arteries arising from the common trunk, the standard method of right ventricular outflow tract reconstruction entails removing the central pulmonary arteries from the common trunk en bloc and placing a valved conduit from the right ventricle proximally to the central pulmonary arteries distally. Also, the most common type of conduit used is a cryopreserved valved aortic or pulmonary allograft. Before allograft conduits became widely available, other forms of pulmonary outflow reconstruction were used. These alternative forms remain in use in areas where the cost and availability of conduits prohibit routine use of modern techniques. Such alternatives include xenograft valves housed in synthetic tube grafts, direct anastomosis of the pulmonary arteries to the right ventriculotomy, or autologous flaps of pulmonary or aortic tissue augmented with synthetic patch material.

In patients with one pulmonary artery arising from the common trunk and one from the underside of the aortic arch, the pulmonary arteries are disconnected separately; they are then anastomosed together before being anastomosed to the conduit or are anastomosed to the conduit independently.

Coexisting anomalies are repaired as appropriate with cardiopulmonary bypass, cardioplegia, and sometimes deep hypothermic arrest, depending on anatomic features and the preference of the surgeon.

When the truncal valve is abnormal and repaired at the time of the initial truncus repair, outcomes appear to be significantly worse that when early truncal valve repair is not necessary.[12, 13]

Previous
Next

Consultations

Unless specific associated anomalies or problems are identified, consultations are not generally necessary.

Band 22q11 deletion is present in approximately one third of patients with truncus arteriosus, and consultation with a geneticist may be appropriate in some of these patients. Although patients with this chromosomal anomaly may have subtle associated abnormalities that are more likely to be identified if an experienced clinical geneticist is consulted, no evidence suggests that outcomes or management considerations differ in patients with or without chromosomal deletion.

When a chromosome 22q11 deletion is identified, comprehensive evaluation for associated conditions is indicated, including an otolaryngologist to evaluate for submucosal cleft palate, an immunologist to evaluate for immunodeficiency, and early intervention services for evaluation of learning and speech.

Consult a cardiologist before beginning, changing, or discontinuing cardiac medications in these patients.

Previous
Next

Diet

No special dietary considerations are indicated in patients with truncus arteriosus, other than a diet that might be dictated by associated conditions.

Resume enteral feeding once the patient is hemodynamically stable.

Resume oral feedings when the patient has been removed from mechanical ventilatory support and is adequately alert to take oral feedings safely. In patients with deletion in band 22q11, velopharyngeal insufficiency or cleft palate is frequently present, and oral feedings should be resumed with the aid of feeding specialists.

Previous
Next

Activity

Specific restrictions on activity are not indicated in patients with truncus arteriosus. Patients with repaired truncus arteriosus and either residual defects or regurgitation of the right ventricle to pulmonary artery conduit may have limited exercise capacity best addressed on an individual basis.

Previous
 
 
Contributor Information and Disclosures
Author

Doff B McElhinney, MD Assistant Professor of Pediatrics, Harvard Medical School; Associate in Cardiology, Department of Cardiology, Children's Hospital of Boston

Doff B McElhinney, MD is a member of the following medical societies: American Academy of Pediatrics, American College of Cardiology

Disclosure: Nothing to disclose.

Coauthor(s)

Gil Wernovsky, MD, FACC, FAAP Professor, Department of Pediatrics, University of Pennsylvania, Children's Hospital of Philadelphia

Gil Wernovsky, MD, FACC, FAAP is a member of the following medical societies: American Academy of Pediatrics, American College of Cardiology, American Heart Association

Disclosure: Nothing to disclose.

Specialty Editor Board

Mary L Windle, PharmD Adjunct Associate Professor, University of Nebraska Medical Center College of Pharmacy; Editor-in-Chief, Medscape Drug Reference

Disclosure: Nothing to disclose.

Ameeta Martin, MD Clinical Associate Professor, Department of Pediatric Cardiology, University of Nebraska College of Medicine

Ameeta Martin, MD is a member of the following medical societies: American College of Cardiology

Disclosure: Nothing to disclose.

Chief Editor

Howard S Weber, MD, FSCAI Professor of Pediatrics, Section of Pediatric Cardiology, Pennsylvania State University College of Medicine; Director of Interventional Pediatric Cardiology, Penn State Hershey Children's Hospital

Howard S Weber, MD, FSCAI is a member of the following medical societies: American Academy of Pediatrics, American College of Cardiology, Society for Cardiovascular Angiography and Interventions

Disclosure: Received income in an amount equal to or greater than $250 from: St. Jude Medical.

Additional Contributors

Juan Carlos Alejos, MD Clinical Professor, Department of Pediatrics, Division of Cardiology, University of California, Los Angeles, David Geffen School of Medicine

Juan Carlos Alejos, MD is a member of the following medical societies: American Academy of Pediatrics, American College of Cardiology, American Heart Association, American Medical Association, International Society for Heart and Lung Transplantation

Disclosure: Received honoraria from Actelion for speaking and teaching.

References
  1. Collett RW, Edwards JE. Persistent truncus arteriosus: a classification according to anatomic types. Surg Clin North Am. 1949. 29:1245-70.

  2. Van Praagh R, Van Praagh S. The anatomy of common aorticopulmonary trunk (truncus arteriosus communis) and its embryologic implications. A study of 57 necropsy cases. Am J Cardiol. 1965 Sep. 16(3):406-25. [Medline].

  3. Egbe A, Uppu S, Lee S, Ho D, Srivastava S. Changing prevalence of severe congenital heart disease: a population-based study. Pediatr Cardiol. 2014 Oct. 35(7):1232-8. [Medline].

  4. Marelli AJ, Ionescu-Ittu R, Mackie AS, Guo L, Dendukuri N, Kaouache M. Lifetime prevalence of congenital heart disease in the general population from 2000 to 2010. Circulation. 2014 Aug 26. 130(9):749-56. [Medline].

  5. Kodo K, Nishizawa T, Furutani M, Arai S, Yamamura E, Joo K, et al. GATA6 mutations cause human cardiac outflow tract defects by disrupting semaphorin-plexin signaling. Proc Natl Acad Sci U S A. 2009 Aug 18. 106(33):13933-8. [Medline]. [Full Text].

  6. Lisowski LA, Verheijen PM, Copel JA, Kleinman CS, Wassink S, Visser GH, et al. Congenital heart disease in pregnancies complicated by maternal diabetes mellitus. An international clinical collaboration, literature review, and meta-analysis. Herz. 2010 Jan. 35(1):19-26. [Medline].

  7. Chaoui R, Bollmann R, Zienert A, et al. [Prenatal diagnosis of truncus arteriosus communis (type I) in diabetic pregnancy]. Zentralbl Gynakol. 1992. 114(4):198-200. [Medline].

  8. Swanson TM, Selamet Tierney ES, Tworetzky W, Pigula F, McElhinney DB. Truncus arteriosus: diagnostic accuracy, outcomes, and impact of prenatal diagnosis. Pediatr Cardiol. 2009 Apr. 30(3):256-61. [Medline].

  9. Turan S, Turan OM, Desai A, Harman CR, Baschat AA. First-trimester fetal cardiac examination using spatiotemporal image correlation, tomographic ultrasound and color Doppler imaging for the diagnosis of complex congenital heart disease in high-risk patients. Ultrasound Obstet Gynecol. 2014 Nov. 44(5):562-7. [Medline].

  10. Rao PS. Diagnosis and management of cyanotic congenital heart disease: part I. Indian J Pediatr. 2009 Jan. 76(1):57-70. [Medline].

  11. [Guideline] Saxena A. Consensus on timing of intervention for common congenital heart disease. Indian Pediatr. 2008 Feb. 45(2):117-26. [Medline].

  12. Russell HM, Pasquali SK, Jacobs JP, Jacobs ML, O'Brien SM, Mavroudis C, et al. Outcomes of repair of common arterial trunk with truncal valve surgery: a review of the society of thoracic surgeons congenital heart surgery database. Ann Thorac Surg. 2012 Jan. 93(1):164-9; discussion 169. [Medline]. [Full Text].

  13. Lund AM, Vogel M, Marshall AC, Emani SM, Pigula FA, Tworetzky W, et al. Early reintervention on the pulmonary arteries and right ventricular outflow tract after neonatal or early infant repair of truncus arteriosus using homograft conduits. Am J Cardiol. 2011 Jul 1. 108(1):106-13. [Medline].

  14. Alexiou C, Keeton BR, Salmon AP, Monro JL. Repair of truncus arteriosus in early infancy with antibiotic sterilized aortic homografts. Ann Thorac Surg. 2001 May. 71(5 Suppl):S371-4. [Medline].

  15. Anderson RH, Thiene G. Categorization and description of hearts with a common arterial trunk. Eur J Cardiothorac Surg. 1989. 3(6):481-7. [Medline].

  16. Bamforth SD, Braganca J, Eloranta JJ, et al. Cardiac malformations, adrenal agenesis, neural crest defects and exencephaly in mice lacking Cited2, a new Tfap2 co-activator. Nat Genet. 2001 Dec. 29(4):469-74. [Medline].

  17. Barbero-Marcial M, Tanamati C. Alternative nonvalved techniques for repair of truncus arteriosus: Long-term results. Semin Thorac Cardiovasc Surg Pediatr Card Surg Annu. 1999. 2():121-130. [Medline].

  18. Bartelings MM, Gittenberger-de Groot AC. Morphogenetic considerations on congenital malformations of the outflow tract. Part 1: Common arterial trunk and tetralogy of Fallot. Int J Cardiol. 1991 Aug. 32(2):213-30. [Medline].

  19. Becker AE, Becker MJ, Edwards JE. Pathology of the semilunar valve in persistent truncus arteriosus. J Thorac Cardiovasc Surg. 1971 Jul. 62(1):16-26. [Medline].

  20. Bove EL, Lupinetti FM, Pridjian AK, et al. Results of a policy of primary repair of truncus arteriosus in the neonate. J Thorac Cardiovasc Surg. 1993 Jun. 105(6):1057-65; discussion 1065-6. [Medline].

  21. Brizard CP, Cochrane A, Austin C, et al. Management strategy and long-term outcome for truncus arteriosus. Eur J Cardiothorac Surg. 1997 Apr. 11(4):687-95; discussion 695-6. [Medline].

  22. Brown JW, Ruzmetov M, Okada Y, et al. Truncus arteriosus repair: outcomes, risk factors, reoperation and management. Eur J Cardiothorac Surg. 2001 Aug. 20(2):221-7. [Medline].

  23. Chen JM, Glickstein JS, Davies RR, et al. The effect of repair technique on postoperative right-sided obstruction in patients with truncus arteriosus. J Thorac Cardiovasc Surg. 2005 Mar. 129(3):559-68. [Medline].

  24. Crupi G, Macartney FJ, Anderson RH. Persistent truncus arteriosus. A study of 66 autopsy cases with special reference to definition and morphogenesis. Am J Cardiol. 1977 Oct. 40(4):569-78. [Medline].

  25. Danton MH, Barron DJ, Stumper O, et al. Repair of truncus arteriosus: a considered approach to right ventricular outflow tract reconstruction. Eur J Cardiothorac Surg. 2001 Jul. 20(1):95-103. discussion 103-4. [Medline].

  26. de la Cruz MV, Cayre R, Angelini P, et al. Coronary arteries in truncus arteriosus. Am J Cardiol. 1990 Dec 15. 66(20):1482-6. [Medline].

  27. Di Donato RM, Fyfe DA, Puga FJ, et al. Fifteen-year experience with surgical repair of truncus arteriosus. J Thorac Cardiovasc Surg. 1985 Mar. 89(3):414-22. [Medline].

  28. Digilio MC, Angioni A, Giannotti A, et al. Truncus arteriosus and duplication 8q. Am J Med Genet A. 2003 Aug 15. 121(1):79-81. [Medline].

  29. Ebert PA, Turley K, Stanger P, et al. Surgical treatment of truncus arteriosus in the first 6 months of life. Ann Surg. 1984 Oct. 200(4):451-6. [Medline].

  30. Elkins RC, Steinberg JB, Razook JD, et al. Correction of truncus arteriosus with truncal valvar stenosis or insufficiency using two homografts. Ann Thorac Surg. 1990 Nov. 50(5):728-33. [Medline].

  31. Feiner L, Webber AL, Brown CB, et al. Targeted disruption of semaphorin 3C leads to persistent truncus arteriosus and aortic arch interruption. Development. 2001 Aug. 128(16):3061-70. [Medline].

  32. Fyfe DA, Driscoll DJ, Di Donato RM, et al. Truncus arteriosus with single pulmonary artery: influence of pulmonary vascular obstructive disease on early and late operative results. J Am Coll Cardiol. 1985 May. 5(5):1168-72. [Medline].

  33. Gerlis LM, Ho SY, Smith A, et al. The site of origin of nonconfluent pulmonary arteries from a common arterial trunk or from the ascending aorta: its morphological significance. Am J Cardiovasc Pathol. 1990. 3(2):115-20. [Medline].

  34. Hanley FL, Heinemann MK, Jonas RA, et al. Repair of truncus arteriosus in the neonate. J Thorac Cardiovasc Surg. 1993 Jun. 105(6):1047-56. [Medline].

  35. Heathcote K, Braybrook C, Abushaban L, et al. Common arterial trunk associated with a homeodomain mutation of NKX2.6. Hum Mol Genet. 2005 Mar 1. 14(5):585-93. [Medline].

  36. Heinemann MK, Hanley FL, Fenton KN, et al. Fate of small homograft conduits after early repair of truncus arteriosus. Ann Thorac Surg. 1993 Jun. 55(6):1409-11; discussion 1411-2. [Medline].

  37. Imamura M, Drummond-Webb JJ, Sarris GE, et al. Improving early and intermediate results of truncus arteriosus repair: a new technique of truncal valve repair. Ann Thorac Surg. 1999 Apr. 67(4):1142-6. [Medline].

  38. Jahangiri M, Zurakowski D, Mayer JE, et al. Repair of the truncal valve and associated interrupted arch in neonates withtruncus arteriosus. J Thorac Cardiovasc Surg. 2000 Mar. 119(3):508-14. [Medline].

  39. Kaartinen V, Dudas M, Nagy A, et al. Cardiac outflow tract defects in mice lacking ALK2 in neural crest cells. Development. 2004 Jul. 131(14):3481-90. [Medline].

  40. Kirklin JW, Barratt-Boyes BG. Truncus arteriosus. Cardiac Surgery. New York, NY: John Wiley & Sons; 1992. 1131-51.

  41. Lacour-Gayet F, Serraf A, Komiya T, et al. Truncus arteriosus repair: influence of techniques of right ventricular outflow tract reconstruction. J Thorac Cardiovasc Surg. 1996 Apr. 111(4):849-56. [Medline].

  42. Litovsky SH, Ostfeld I, Bjornstad PG, et al. Truncus arteriosus with anomalous pulmonary venous connection. Am J Cardiol. 1999 Mar 1. 83(5):801-4, A10. [Medline].

  43. Mavroudis C, Backer CL. Surgical management of severe truncal insufficiency: experience with truncal valve remodeling techniques. Ann Thorac Surg. 2001 Aug. 72(2):396-400. [Medline].

  44. McElhinney DB, Driscoll DA, Emanuel BS, Goldmuntz E. Chromosome 22q11 deletion in patients with truncus arteriosus. Pediatr Cardiol. 2003 Nov-Dec. 24(6):569-73. [Medline].

  45. McElhinney DB, Hedrick HL, Bush DM, et al. Necrotizing enterocolitis in neonates with congenital heart disease: risk factors and outcomes. Pediatrics. 2000 Nov. 106(5):1080-7. [Medline].

  46. McElhinney DB, Rajasinghe HA, Mora BN, et al. Reinterventions after repair of common arterial trunk in neonates and young infants. J Am Coll Cardiol. 2000 Apr. 35(5):1317-22. [Medline].

  47. McElhinney DB, Reddy VM, Rajasinghe HA, et al. Trends in the management of truncal valve insufficiency. Ann Thorac Surg. 1998 Feb. 65(2):517-24. [Medline].

  48. Mohammadi S, Belli E, Martinovic I, et al. Surgery for right ventricle to pulmonary artery conduit obstruction: risk factors for further reoperation. Eur J Cardiothorac Surg. 2005 Aug. 28(2):217-22. [Medline].

  49. Momma K, Ando M, Matsuoka R. Truncus arteriosus communis associated with chromosome 22q11 deletion. J Am Coll Cardiol. 1997 Oct. 30(4):1067-71. [Medline].

  50. Niwa K, Perloff JK, Kaplan S, et al. Eisenmenger syndrome in adults: ventricular septal defect, truncus arteriosus, univentricular heart. J Am Coll Cardiol. 1999 Jul. 34(1):223-32. [Medline].

  51. Rajasinghe HA, McElhinney DB, Reddy VM, et al. Long-term follow-up of truncus arteriosus repaired in infancy: a twenty- year experience. J Thorac Cardiovasc Surg. 1997 May. 113(5):869-78; discussion 878-9. [Medline].

  52. Reddy VM, Rajasinghe HA, McElhinney DB, et al. Performance of right ventricle to pulmonary artery conduits after repair of truncus arteriosus: a comparison of Dacron-housed porcine valves and cryopreserved allografts. Semin Thorac Cardiovasc Surg. 1995 Jul. 7(3):133-8. [Medline].

  53. Schreiber C, Eicken A, Balling G, et al. Single centre experience on primary correction of common arterial trunk: overall survival and freedom from reoperation after more than 15 years. Eur J Cardiothorac Surg. 2000 Jul. 18(1):68-73. [Medline].

  54. Silverman NH. Truncus arteriosus. Pediatric Echocardiography. Baltimore, Md: Williams & Wilkins; 1993. 229-43.

  55. Stewart DE, Kirby ML, Sulik KK. Hemodynamic changes in chick embryos precede heart defects after cardiac neural crest ablation. Circ Res. 1986 Nov. 59(5):545-50. [Medline].

  56. Suzuki A, Ho SY, Anderson RH, et al. Coronary arterial and sinusal anatomy in hearts with a common arterial trunk. Ann Thorac Surg. 1989 Dec. 48(6):792-7. [Medline].

  57. Takeuchi JK, Mileikovskaia M, Koshiba-Takeuchi K, et al. Tbx20 dose-dependently regulates transcription factor networks required for mouse heart and motoneuron development. Development. 2005 May. 132(10):2463-74. [Medline].

  58. Thompson LD, McElhinney DB, Reddy M, et al. Neonatal repair of truncus arteriosus: continuing improvement in outcomes. Ann Thorac Surg. 2001 Aug. 72(2):391-5. [Medline].

  59. Tlaskal T, Hucin B, Kostelka M, et al. Successful reoperation for severe left bronchus compression after repair of persistent truncus arteriosus with interrupted aortic arch. Eur J Cardiothorac Surg. 1998 Mar. 13(3):306-9. [Medline].

  60. Tometzki AJ, Suda K, Kohl T, et al. Accuracy of prenatal echocardiographic diagnosis and prognosis of fetuses with conotruncal anomalies. J Am Coll Cardiol. 1999 May. 33(6):1696-701. [Medline].

  61. Tworetzky W, McElhinney DB, Brook MM, et al. Echocardiographic diagnosis alone for the complete repair of major congenital heart defects. J Am Coll Cardiol. 1999 Jan. 33(1):228-33. [Medline].

  62. Van Mierop LHS, Patterson DF, Schnarr WR. Pathogenesis of persistent truncus arteriosus in light of observations made in a dog embryo with the anomaly. Am J Cardiol. 1978. 41(4):755-62. [Medline].

  63. Van Praagh R. Truncus arteriosus: what is it really and how should it be classified?. Eur J Cardiothorac Surg. 1987. 1(2):65-70. [Medline].

  64. Volpe P, Paladini D, Marasini M, et al. Common arterial trunk in the fetus: characteristics, associations, and outcome in a multicentre series of 23 cases. Heart. 2003 Dec. 89(12):1437-41. [Medline].

  65. Williams JM, de Leeuw M, Black MD, et al. Factors associated with outcomes of persistent truncus arteriosus. J Am Coll Cardiol. 1999 Aug. 34(2):545-53. [Medline].

 
Previous
Next
 
Anatomic subtypes of truncus arteriosus (TA), according to the classification systems of both Collett and Edwards (I, II, III) and the Van Praaghs (A1, A2, A3, A4).
Pathologic specimen with truncus arteriosus (TA), viewed through the opened right ventricle and truncal valve. The common trunk (CT) can be seen giving off the ascending aorta (AA) as well as the left (LPA) and right (RPA) pulmonary arteries. The truncal valve straddles the ventricular septal defect (VSD). The tricuspid valve (TV) also is labeled. Photograph courtesy of Robert H. Anderson, MD.
Pathologic specimen with truncus arteriosus (TA) and interruption of the aortic arch between the left (L) common carotid (CCA) and subclavian (SCA) arteries, viewed from the anterior aspect. The common trunk (CT) is seen arising from the ventricular mass, including the right ventricular (RV) infundibulum. Pulmonary arteries arise as a single trunk from the leftward aspect of the common trunk, which then divides into left and right branches (not shown) and the arterial duct (DA), which continues into the descending aorta, from which the left subclavian artery arises. The ascending aorta (AA), which supplies only the right (R) and left common carotid arteries (the right subclavian artery, which arises anomalously as the last brachiocephalic branch, is not shown), continues from the rightward aspect of the common trunk and is much smaller than in patients without an interrupted arch. RA=right atrial appendage. Photograph courtesy of Robert H. Anderson, MD.
Echocardiographic images of truncus arteriosus (TA). The top image is from the subcostal coronal window (SC COR) and shows the common trunk (TR) arising from the left ventricle (LV), overriding the interventricular septum. The common trunk branches into the pulmonary trunk and the ascending aorta (AO). The left pulmonary artery (LPA) may be seen branching from the pulmonary trunk. RA=right atrium; RPA=right pulmonary artery. In the bottom image, which is from the suprasternal notch sagittal window, the truncal origin and course of the pulmonary trunk and left pulmonary artery can be appreciated. DAO=descending aorta; IV=innominate vein; LA=left atrium.
 
 
 
All material on this website is protected by copyright, Copyright © 1994-2016 by WebMD LLC. This website also contains material copyrighted by 3rd parties.