Close
New

Medscape is available in 5 Language Editions – Choose your Edition here.

 

Pediatric Subvalvar Aortic Stenosis Treatment & Management

  • Author: Douglas J Schneider, MD; Chief Editor: Howard S Weber, MD, FSCAI  more...
 
Updated: Sep 19, 2015
 

Approach Considerations

Most pediatric patients with subvalvar aortic stenosis (SAS) are asymptomatic. Therefore, medical therapy has no role for such patients. SAS is progressive, however, and intervention is often required at some point in the clinical course of the disease to relieve left ventricular outflow tract (LVOT) obstruction or prevent progressive aortic valve insufficiency. Diagnostic evaluation can be performed on an outpatient basis.

Old reviews reported that heart failure occurred in small percentages of patients. However, surgical intervention is currently undertaken before heart failure develops. If SAS progresses to the point that heart failure or clinically significant LV dysfunction develops, standard medical therapy (except the use of systemic vasodilators such as angiotensin-converting enzyme [ACE] inhibitors) is indicated until surgery can be performed.

Consultation with a pediatric cardiologist and a pediatric cardiac surgeon, as needed, is advisable.

Next

Indications for Intervention

The criteria and timing of intervention for discrete subvalvar aortic stenosis (SAS ) have been controversial. Rationale for early intervention in patients with these lesions, based on rapid progression and eventual aortic valve injury in patients with unrelieved SAS, is offset by the problem of high postoperative incidence of recurrence, late reoperation, and development of aortic regurgitation even after successful early relief of the obstruction.[14, 15, 16]

Based on published data, an approach to the management of SAS after risk-benefit stratification is nonintervention and medical follow-up in children and adolescents with Doppler mean gradients of less than 30 mm Hg and no left ventricular (LV) hypertrophy.[14, 16]

Children and adolescents with Doppler mean gradients of 50 mm Hg or more should have surgical intervention, similar to what is indicated in patients with valvar aortic stenosis.

Children and adolescents with Doppler mean gradients of 30-50 mm Hg may be considered for surgical intervention if they are symptomatic with angina, syncope, or dyspnea on exertion (class I), if they are asymptomatic but develop ST/T-wave changes over left precordium on ECG at rest or with exercise (class I), or if they have substrate for a progressive course, a Doppler peak systolic gradient of more than 50 mm Hg, or an older age at diagnosis.[14, 15, 16, 17]

Prevention of aortic regurgitation is usually not an indication for surgical intervention in those with mild left ventricular outflow tract (LVOT) obstruction.[16]  Progression from no or trace aortic valve insufficency to a more significant grade is an indication for surgical intervention in an effort to prevent worsening insufficiency in the future. Tunnel-like SAS should have an early surgical intervention.

Previous
Next

Interventional Procedures

Percutaneous balloon dilation of discrete subvalvar aortic stenosis (SAS) has been infrequently reported as successful in reducing the left ventricular outflow tract (LVOT) pressure gradient and, usually, relief is relatively brief. Balloon dilation is not typically considered to be useful in SAS.

The surgery of choice for discrete fibromuscular SAS is complete resection with myotomy, with or without myomectomy through an aortotomy. Children, adolescents, and young adults with clinically significant aortic regurgitation may require aortic valve repair or replacement.

For tunnel-type SAS (seen in the image below) with a small LV-aortic junction, an aortoventriculoplasty (Konno procedure) may be required. This involves excision and replacement of the aortic valve with a prosthesis, patch augmentation of ventricular septum to enlarge the LVOT, and pericardial patch closure of the right ventriculotomy, which is used to gain access to the LVOT.

Tunnel-type of subaortic stenosis (subvalvular aor Tunnel-type of subaortic stenosis (subvalvular aortic stenosis [SAS]). MV = mitral valve.

For recurrent SAS and for tunnel-type SAS with normal LV-aortic junction and aortic valve, a modified Konno procedure (ie, without aortic valve excision and replacement) may be performed.

For complex SAS or tunnel stenosis, current surgical practices are individualized but may employ an aortoventriculoplasty in combination with aortic root replacement by using a prosthetic aortic valve, an aortic valve allograft, or a pulmonary valve autograft (Ross-Konno procedure).[20]

Previous
Next

Activity

Impose activity restrictions, as indicated, on the basis of the degree of residual hemodynamic abnormality. Advise patients with subvalvar aortic stenosis (SAS) to avoid participation in strenuous activities and in competitive sports.

Competitive sports and games, weight training, and strenuous exercises should not be permitted if patients have any of the following:

  • Clinically significant left ventricular outflow tract (LVOT) obstruction (peak echo pressure gradient >50 mmHg)
  • More-than-mild aortic regurgitation
  • Marked LV hypertrophy
  • Clinically significant ventricular or supraventricular arrhythmia
Previous
Next

Endocarditis Prophylaxis

According to American College of Cardiology/American Heart Association (ACC/AHA) guidelines, no antibiotic prophylaxis is required for subvalvar aortic stenosis when no surgery for the condition has been performed.[21] If a patch is used for outflow reconstruction (eg, for the Konno procedure), then subsequent antibiotic prophylaxis against bacterial endocarditis is recommended for 6 months postoperatively.

Previous
Next

Long Term Monitoring

Sudden cardiac death is possible because subvalvar aortic stenosis (SAS) is a progressive disorder. Close follow-up care is important to detect the progressive course of the disease and to prevent sudden death. Routine follow-up care is required for patients who undergo surgery and for those who do not.

Because of the possibility of rapid progression, follow-up care for infants and young children should be more frequent (eg, every 4-6 mo) until the rate of progression is understood. Other children may be followed up at intervals of 3-12 months, depending on the severity of their obstruction and associated lesions.

Long-term postoperative follow-up care is indicated for all patients with SAS. About 10-25% of patients may have a residual gradient in excess of 50 mm Hg. The known high incidence of recurrence and the possible progressive worsening of aortic regurgitation after surgery underscore the need for long-term surveillance. Repeat surgery may be indicated.

More-than-mild SAS poses a high risk during pregnancy.[22] Therefore, close monitoring for heart failure, follow-up by a multidisciplinary team, and delivery at a center experienced in dealing with such problems are warranted.

Previous
 
 
Contributor Information and Disclosures
Author

Douglas J Schneider, MD Associate Professor of Pediatrics, Clinical Tract, Division of Pediatric Cardiology, Department of Pediatrics, University of Kentucky College of Medicine; Director, Pediatric Cardiac Catheterization Laboratory, Kentucky Children’s Hospital

Disclosure: Nothing to disclose.

Coauthor(s)

Gautam K Singh, MD, , MRCP Professor of Pediatrics, Division of Cardiology, Director of Noninvasive Imaging Research, Co-Director of Echocardiography Laboratory, Washington University in St Louis School of Medicine; Attending Faculty, Department of Pediatrics, Division of Cardiology, St Louis Children's Hospital

Gautam K Singh, MD, , MRCP is a member of the following medical societies: American College of Cardiology, American Heart Association, American Society of Echocardiography, Royal College of Physicians

Disclosure: Nothing to disclose.

Specialty Editor Board

Mary L Windle, PharmD Adjunct Associate Professor, University of Nebraska Medical Center College of Pharmacy; Editor-in-Chief, Medscape Drug Reference

Disclosure: Nothing to disclose.

John W Moore, MD, MPH Professor of Clinical Pediatrics, Section of Pediatic Cardiology, Department of Pediatrics, University of California San Diego School of Medicine; Director of Cardiology, Rady Children's Hospital

John W Moore, MD, MPH is a member of the following medical societies: American Academy of Pediatrics, American College of Cardiology, Society for Cardiovascular Angiography and Interventions

Disclosure: Nothing to disclose.

Chief Editor

Howard S Weber, MD, FSCAI Professor of Pediatrics, Section of Pediatric Cardiology, Pennsylvania State University College of Medicine; Director of Interventional Pediatric Cardiology, Penn State Hershey Children's Hospital

Howard S Weber, MD, FSCAI is a member of the following medical societies: American Academy of Pediatrics, American College of Cardiology, Society for Cardiovascular Angiography and Interventions

Disclosure: Received income in an amount equal to or greater than $250 from: St. Jude Medical.

Additional Contributors

Paul M Seib, MD Associate Professor of Pediatrics, University of Arkansas for Medical Sciences; Medical Director, Cardiac Catheterization Laboratory, Co-Medical Director, Cardiovascular Intensive Care Unit, Arkansas Children's Hospital

Paul M Seib, MD is a member of the following medical societies: American Academy of Pediatrics, American College of Cardiology, American Heart Association, Arkansas Medical Society, International Society for Heart and Lung Transplantation, Society for Cardiovascular Angiography and Interventions

Disclosure: Nothing to disclose.

References
  1. Iwata Y, Imai Y, Shin'oka T, Kurosawa H. Subaortic stenosis associated with systolic anterior motion. Heart Vessels. 2008 Nov. 23(6):436-9. [Medline].

  2. Somerville J, Stone S, Ross D. Fate of patients with fixed subaortic stenosis after surgical removal. Br Heart J. 1980 Jun. 43(6):629-47. [Medline]. [Full Text].

  3. Bezold LI, Smith EO, Kelly K, et al. Development and validation of an echocardiographic model for predicting progression of discrete subaortic stenosis in children. Am J Cardiol. 1998 Feb 1. 81(3):314-20. [Medline].

  4. Edwards JE. Pathology of left ventricular outflow tract obstruction. Circulation. 1965 Apr. 31:586-99. [Medline].

  5. Pavione MA, Mendonça JT, Souza IS, Russo MA. Accessory mitral leaflet: an uncommon form of subaortic stenosis. Rev Bras Cir Cardiovasc. 2012 Jul-Sep. 27(3):477-80. [Medline].

  6. Ezon DS. Fixed subaortic stenosis: a clinical dilemma for clinicians and patients. Congenit Heart Dis. 2013 Sep. 8(5):450-6. [Medline].

  7. Gokalp S, Oztunc F. Clinically asymptomatic myocardial bridging in a child with familial subaortic stenosis. Cardiol Young. 2013 Jun 28. 1-3. [Medline].

  8. Barkhordarian R, Wen-Hong D, Li W, et al. Geometry of the left ventricular outflow tract in fixed subaortic stenosis and intact ventricular septum: an echocardiographic study in children and adults. J Thorac Cardiovasc Surg. 2007 Jan. 133(1):196-203. [Medline].

  9. Kleinert S, Geva T. Echocardiographic morphometry and geometry of the left ventricular outflow tract in fixed subaortic stenosis. J Am Coll Cardiol. 1993 Nov 1. 22(5):1501-8. [Medline].

  10. Reist-Marti SB, Dolf G, Leeb T, et al. Genetic evidence of subaortic stenosis in the Newfoundland dog. Vet Rec. 2012 Jun 9. 170 (23):597. [Medline].

  11. Newfeld EA, Muster AJ, Paul MH, et al. Discrete subvalvular aortic stenosis in childhood. Study of 51 patients. Am J Cardiol. 1976 Jul. 38(1):53-61. [Medline].

  12. Wright GB, Keane JF, Nadas AS, et al. Fixed subaortic stenosis in the young: medical and surgical course in 83 patients. Am J Cardiol. 1983 Oct 1. 52(7):830-5. [Medline].

  13. Suri RM, Dearani JA, Schaff HV, Danielson GK, Puga FJ. Long-term results of the Konno procedure for complex left ventricular outflow tract obstruction. J Thorac Cardiovasc Surg. 2006 Nov. 132(5):1064-71. [Medline].

  14. Karamlou T, Gurofsky R, Bojcevski A, et al. Prevalence and associated risk factors for intervention in 313 children with subaortic stenosis. Ann Thorac Surg. 2007 Sep. 84(3):900-6; discussion 906. [Medline].

  15. Rohlicek CV, del Pino SF, Hosking M, Miro J, Côté JM, Finley J. Natural history and surgical outcomes for isolated discrete subaortic stenosis in children. Heart. 1999 Dec. 82(6):708-13. [Medline]. [Full Text].

  16. Gersony WM. Natural history of discrete subvalvar aortic stenosis: management implications. J Am Coll Cardiol. 2001 Sep. 38(3):843-5. [Medline].

  17. Brauner R, Laks H, Drinkwater DC Jr, Shvarts O, Eghbali K, Galindo A. Benefits of early surgical repair in fixed subaortic stenosis. J Am Coll Cardiol. 1997 Dec. 30(7):1835-42. [Medline].

  18. de Agustin JA, Gomez de Diego JJ, Marcos-Alberca P, Macaya C, Perez de Isla L. Combined subaortic membrane and aortic valve stenosis: additive value of three-dimensional echocardiography. Eur Heart J Cardiovasc Imaging. 2013 Oct 18. [Medline].

  19. Singh GK, Shiota T, Cobanoglu A, et al. Diagnostic accuracy and role of intraoperative biplane transesophageal echocardiography in pediatric patients with left ventricle outflow tract lesions. J Am Soc Echocardiogr. 1998 Jan. 11(1):47-56. [Medline].

  20. Brown JW, Ruzmetov M, Vijay P, et al. Operative results and outcomes in children with Shone's anomaly. Ann Thorac Surg. 2005 Apr. 79(4):1358-65. [Medline].

  21. [Guideline] Bonow RO, Carabello BA, Kanu C, et al. ACC/AHA 2006 guidelines for the management of patients with valvular heart disease: a report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines (writing committee to revise the 1998 Guidelines for the Management of Patients With Valvular Heart Disease): developed in collaboration with the Society of Cardiovascular Anesthesiologists: endorsed by the Society for Cardiovascular Angiography and Interventions and the Society of Thoracic Surgeons. Circulation. 2006 Aug 1. 114(5):e84-231. [Medline].

  22. Guglin M, Kristof-Kuteyeva O. Congenital discrete subaortic stenosis in pregnancy: case report and literature review. J Heart Valve Dis. 2013 May. 22(3):439-44. [Medline].

 
Previous
Next
 
Echocardiogram of membranous subaortic stenosis. AO = aortic; LA = left atrium; LVOT = left ventricular outflow tract.
Tunnel-type of subaortic stenosis (subvalvular aortic stenosis [SAS]). MV = mitral valve.
 
 
 
All material on this website is protected by copyright, Copyright © 1994-2016 by WebMD LLC. This website also contains material copyrighted by 3rd parties.