Medscape is available in 5 Language Editions – Choose your Edition here.


Pediatric Aortic Valve Insufficiency Treatment & Management

  • Author: Mohsen Saidinejad, MD, MPH, MBA; Chief Editor: Stuart Berger, MD  more...
Updated: Jan 04, 2016

Medical Care

See the list below:

  • Currently, acute severe aortic valve insufficiency cannot be managed by medication alone. [4] Symptomatic patients with normal left ventricle (LV) function may be safely treated with aggressive medical management with variable results, but no present data have provided for a significant role of medical therapy for patients with acute severe aortic valve insufficiency.
  • In severe aortic valve insufficiency, the excess in afterload increases burden on the left side of the heart. Theoretically, any medication that can reduce afterload could be expected to improve left ventricular function and decrease regurgitant backflow from the aorta. This would provide a temporizing measure by which surgical intervention can be postponed. One study showed that the use of nifedipine in asymptomatic patients with severe aortic regurgitation who had normal LV function could delay the need for surgery by 2-3 years. [5] This result may also be expected with the use of similar vasodilating agents.
  • As a general rule, medical management of chronic aortic valve insufficiency is related to the severity of regurgitation, symptoms, LV function, and size, as follows:
    • Moderate aortic valve insufficiency with no change in cardiac size
    • Mild or moderate aortic valve insufficiency with only minimally increased cardiac size
    • Severe aortic valve insufficiency with volume overload
    • Severe aortic valve insufficiency with LV dysfunction
    • Severe aortic valve insufficiency with significant LV hypertrophy
    • Mild aortic valve insufficiency with no change in cardiac size
      • Therapy not required
      • Echocardiographic follow-up required every 12 months, looking for change in chamber size or cardiac function
      • Antibiotic prophylaxis for endocarditis
    • Moderate aortic valve insufficiency with slight limitation of cardiac reserve
      • No vigorous athletic activity
      • No isometric exercise
      • No therapy except endocarditis prophylaxis
      • Follow-up echocardiographic studies
    • Severe aortic valve insufficiency with LV dilation but normal LV systolic performance
      • Echocardiographic evaluation every 6 months
      • Vasodilators: With the exception of vasodilators, no data suggest that other medications are of long-term benefit hemodynamically or in terms of patient outcome. Vasodilating agents reduce afterload by improving stroke volume and subsequently reduce regurgitant volume in chronic severe AR. This reduces end-diastolic volume of the LV; therefore, wall stress and afterload is decreased, and LV function and size normalize.
      • No isometric exercise or school physical education activities
      • Digitalis glycosides
      • Other cardiac glycosides
    • Severe aortic valve insufficiency with symptoms and/or reduction in LV function
      • Surgical treatment
      • Aortic valve replacement
  • Other therapeutic modalities include the following:
    • Arrhythmias treated when present
    • Bradycardias treated when present
    • Possible infections treated
    • Possible role of nitroglycerin in management of angina
    • Intravenous hydralazine
    • Oral prazosin
    • Sublingual nifedipine
  • Cardiac catheterization may be indicated, if questions remain after evaluation with echo-Doppler, CT, and MRI, as follows:
    • In symptomatic patients with an ejection fraction less than 0.55 or an end-systolic LV dimension of 55 mm or higher (or, in Marfan syndrome, an aortic dimension of >4 cm), perform cardiac catheterization and angiography in anticipation of valve replacement surgery.
    • An indicator-dilution, thermodilution, or Fick technique is used for cardiac output measurement.
    • Retrograde left heart catheterization records coronary driving pressure, and LV angiocardiography evaluates the size of the LV, wall thickness, mitral valve function, patency of the coronary arteries, and diameters of the aortic root and ascending aorta.
    • Cine aortography with contrast material into the aortic root is used to measure the severity of AI, with calculation of regurgitant volume by subtraction of the net forward flow (ie, Fick method) from the angiographically determined total forward flow.
    • Possible complications include rupture of blood vessel, tachyarrhythmias, bradyarrhythmias, and vascular occlusion.
    • Postcatheterization complications include hemorrhage, vascular disruption after balloon dilation, pain, nausea, and vomiting. Other possible complications include arterial or venous obstruction by a thrombus or transient vasospasm.

Surgical Care

With development of increasing severity in symptoms, aortic valve replacement should be considered, even if LV systolic performance appears well preserved. Surgery is also indicated in patients with severe aortic regurgitation and reproducible evidence of LV dysfunction at rest or extreme LV dilation. In asymptomatic patients, do not consider surgery on the basis of a single echocardiographic or radionuclide angiographic measurement.

When choosing surgical intervention, assess the patient's clinical stability for a major surgical procedure and sufficiently examine the risks and benefits. Deciding the appropriateness of surgical intervention may be difficult in a patient who has the immediate risk of surgical intervention with aortic valve replacement and risk of hemodynamic collapse without surgical intervention.

In symptomatic patients, surgical intervention is a more acceptable approach than attempting long-term medical therapy. The exception to this is symptomatic patients with normal LV systolic performance who are poor candidates for surgery because of additional cardiac or noncardiac risk factors.

  • Outcomes of surgical therapy
    • Surgical outcome tends to correspond to the degree of LV performance before surgery.
    • Persistent cardiomegaly is possible.
    • Worsening of LV function after valve placement may occur.
    • LV function improves greatly in persons whose LV systolic performance was adequate preoperatively.
  • Postoperative considerations
    • Focus on minimizing postoperative LV dysfunction and assessing ventricular size.
    • Short duration of preoperative ventricular dysfunction is associated with good postsurgical outcome.
    • Obtain close follow-up echocardiographic studies.
    • Use radionuclide ventriculography for follow-up assessments.
    • Evaluate ejection fraction and end-systolic volumes.
    • Evaluate LV volume overload during exertion as opposed to during rest.
  • Assessing surgically suitable candidates
    • Assess indices that are relatively load-independent, including end-systolic wall stress-Vcfc relationship.
    • Look for predictors of poor surgical outcome, including the following:
      • Patients with severe LV dysfunction
      • Prolonged ventricular dysfunction with decompensation
      • Ejection fraction less than 0.50 (may suggest need for surgical evaluation but is also associated with possibility of poor surgical outcome)
      • In adults, end-systolic diameter higher than 55 mm (may signify risk of LV dysfunction and death; however, no guidelines have been formulated for children)
  • Surgical correction
    • The focus is on correcting underlying problem and may involve the following:
      • Correction of the dilated aortic root with annuloplasty
      • Correction of aneurysmal dilation of the ascending aorta with excision and graft replacement and coronary artery reimplantation
      • Correction of prolapsed aortic leaflet
      • Correction of perforated leaflet of a valve with a pericardial patch
      • Placement of prosthetic valve
    • The Ross procedure is one current method of pulmonary valve autotransplantation, although recent studies have begun to indicate the lack of long-term maintenance of the surgical site and re-emergence of aortic insufficiency within a few years after the procedure.[6, 7, 8] The Ross procedure continues to be a surgical option in patients with aortic valve insufficiency, but frequent and early re-evaluation following the operation is warranted.
      • First pioneered by Ross in 1967, the Ross procedure is a complicated procedure that has proponents and opponents. It uses the patient's pulmonary valve and root to replace a diseased aortic valve. The procedure involves harvesting and transposing the pulmonary valve into the aortic position, either as a complete root or as a freehand valve in the native aortic root.
      • One study found that, following the Ross procedure, overall survival rate into adulthood is excellent, and the need for valve replacement is rare.[9] However, the use of a allograft is associated with questions regarding durability and late function.
      • Onetudy compared the clinical and hemodynamic outcome after an aortic valve replacement with a pulmonary valve autograft (using the Ross procedure) with an allograft valve in children.[10] This study reported that both procedures showed excellent clinical results over the following years. It also reported that the Ross procedure showed a better hemodynamic status, suggesting that, over the long run, it may be the better tolerated procedure.
      • In complete pulmonary root transposition, coronary artery reimplantation is needed. Then, a pulmonary homograft is placed in the position of the pulmonary root. Note that the durability of homografts is greater on the right side of the heart than the left; the hemodynamic stress on the right side of the heart is less than that on the left.
      • The pulmonary autotransplanted valve then begins to adapt to the hemodynamic burden of the aortic position without need for anticoagulation. Risk of thromboembolism and endocarditis is thought to be minimal. Nevertheless, reoperation may be necessary in 15-20% of patients within 20 years, usually for replacement of the pulmonary homograft.
      • Elkins et al have studied this procedure in children and concluded that it is the operation of choice for children requiring an aortic valve replacement.[11] The low surgical mortality rate and late morbidity associated with the Ross procedure and lack of a need for anticoagulation make this procedure desirable. Furthermore, Elkins et al noted that the Ross procedure allows a growing child to have a near-normal lifestyle, with a limited risk of reoperation for autograft valve or homograft valve failure.
      • Some concerns about the Ross procedure have been raised. The operation is thought to be highly complex and associated with greater risk for complication than isolated aortic valve replacement or root replacement. Another concern is that few cardiothoracic surgeons have enough experience with this procedure in children to be able to offer it with a risk comparable to conventional valve replacement. In addition, the Ross procedure is not indicated in patients with connective tissue disorders, such as Marfan syndrome or primary aneurysm disease with secondary aortic valve incompetence, because aneurysmal changes may also be expected to develop in the new pulmonary transplant in the aortic position.
      • Elkins et al examined mid and late results of autograft valve durability, patient survival, and valve-related morbidity related to the Ross procedure.[9] A retrospective review of patients (age range, 3 d to 17 y) who underwent the Ross procedure between November 1986 and May 2001 was performed using medical records and patient contacts.
      • The most recent echocardiographic evaluation was reviewed for autograft valve and homograft valve function.[9] The operative mortality rate was noted to be 4.5% (8 cases in 178 patients), with 3 late deaths (2 were non–valve-related) for an actuarial survival rate of 92% ± 3% at 12 years. Autograft valve degeneration requiring reoperation or severe insufficiency of autograft valve or valve-related death was low, with the freedom from complication rate reaching 90% ± 4% at 12 years. Autograft valve degeneration was not affected by the technique of insertion (141 root replacement, 37 intra-aortic), aortic valve morphology (157 bicuspid or unicuspid, 26 tricuspid), or age at operation.
      • Autograft valve degeneration was worse in patients with a primary lesion of aortic valve insufficiency than in those with aortic stenosis (P = .03).[9] Autograft valve reoperation was required in 12 patients; autograft valve replacement was needed in 7. The actuarial freedom from autograft replacement was 93% ± 3% at 12 years. Homograft valve replacement was required in 7 patients, with 90% ± 4% actuarial freedom from replacement at 12 years. The study concluded that survival and freedom from aortic valve replacement are excellent in children. Homograft valve late function remains a concern, and efforts to improve homograft durability should be encouraged.
    • Many patients do extremely well after valve replacement. In children, the procedure seems to be well tolerated and successful.
    • Cross-sectional data of 112 patients who had a clinic visit and echocardiography at some point after a Ross procedure were reviewed.[12] Aortic valve insufficiency was the indication for the procedure in most (70.5%) patients, and aortic stenosis was an indication in others (9.8%). The male-to-female ratio was approximately 5:1. The study reported that late outcome for the Ross procedure was excellent with respect to survival and quality of life. On the other hand, physiologically, root dilatation, autograft regurgitation, and allograft stenosis increased in prevalence over time. The study suggested that even slight modifications of the procedure, annual echocardiographic evaluation, and early reintervention on the early and mild dilatation of the aortic root may improve the durability of an autologous pulmonary valve.
    • Currently, the main concern is the long-term performance of allograft. Recent literature has focused on the fact that, although the allograft has excellent performance and provides symptom-free results for several months and even years, the durability of the graft is still a concern. Better, more durable solutions may be required beyond the current lifespan of the grafts presently used, in order to avoid the need for a more dangerous regrafting at a later age.
    • One study published in 2002, presented a 13-year experience with allografts in 267 successive adult patients who underwent graft replacement.[13] The study noted that the range of graft survival was 12-23 years. The overall postoperative survival rate at 9 years was 73%. The study concluded that allograft durability is a potential significant problem.
    • LV function may or may not improve greatly; however, better techniques have allowed for a higher percentage of patients to experience an improvement in LV function.
    • The operative mortality rate for such operations is 4-10%, depending on institutional experiences.
    • A study by Kouchoukos et al raised concern about the long-term performance of the valve following the Ross procedure.[7] The study suggests that the progressive dilatation of the pulmonary graft may be a main cause of surgical failure and a reason for reoperation in patients who have undergone the Ross procedure with the root replacement technique. The study concluded that the long-term follow-up of patients who have had the Ross procedure with root replacement technique has an excellent survival rate and a low risk for thromboembolus and endocarditis. Although the prevalence of neoaortic valve regurgitation is low, the progressive increase in the diameter of the aortic root is a cause of reoperation. Thus, periodic echocardiographic evaluation of the site is recommended because of the ongoing risk of neoaortic valve regurgitation and the formation of aneurysms of the aortic root.
    • Another study by Pasquali et al examined the aortic root diameters 5 years after the Ross procedure and noted that the neoaortic root size increased at a statistically significant rate.[6] This further suggests that although the Ross operation is still considered a palliative procedure for aortic valve disease, over a median follow-up of nearly 5 years after the Ross procedure, neoaortic root size increased significantly out of proportion to somatic growth. The study also found a moderate or greater risk for aortic insufficiency. As many as 12% of patients required further intervention. This was an alarming finding, suggesting that much more frequent and early reassessment of the surgical site is warranted following the Ross procedure.


Management of aortic valve insufficiency in infants, children, and young adults is complex and generally should be supervised by a cardiologist.



No diet restrictions are indicated.



Patients with mild aortic valve insufficiency may continue to engage in regular activity.

Isometric exercise should be avoided in moderate or severe aortic valve insufficiency.

Competitive athletics should be avoided in all patients with severe aortic valve insufficiency.

Contributor Information and Disclosures

Mohsen Saidinejad, MD, MPH, MBA Assistant Professor of Pediatrics and Emergency Medicine, George Washington University School of Medicine and Health Sciences; Attending Physician, Department of Pediatric Emergency Medicine, Children's National Medical Center

Mohsen Saidinejad, MD, MPH, MBA is a member of the following medical societies: American Academy of Pediatrics, American College of Emergency Physicians, American Public Health Association

Disclosure: Nothing to disclose.


Russell R Cross, MD, FACC Associate Clinical Professor of Pediatrics, George Washington University Medical Center; Attending Cardiologist, Co-Director of Cardiac MRI, Division of Cardiology, Children's National Medical Center

Russell R Cross, MD, FACC is a member of the following medical societies: American College of Cardiology, American Society of Echocardiography, Society for Cardiovascular Magnetic Resonance

Disclosure: Nothing to disclose.

Specialty Editor Board

Mary L Windle, PharmD Adjunct Associate Professor, University of Nebraska Medical Center College of Pharmacy; Editor-in-Chief, Medscape Drug Reference

Disclosure: Nothing to disclose.

Alvin J Chin, MD Emeritus Professor of Pediatrics, University of Pennsylvania School of Medicine

Alvin J Chin, MD is a member of the following medical societies: American Association for the Advancement of Science, Society for Developmental Biology, American Heart Association

Disclosure: Nothing to disclose.

Chief Editor

Stuart Berger, MD Medical Director of The Heart Center, Children's Hospital of Wisconsin; Associate Professor, Department of Pediatrics, Section of Pediatric Cardiology, Medical College of Wisconsin

Stuart Berger, MD is a member of the following medical societies: American Academy of Pediatrics, American College of Cardiology, American College of Chest Physicians, American Heart Association, Society for Cardiovascular Angiography and Interventions

Disclosure: Nothing to disclose.

Additional Contributors

Christopher Johnsrude, MD, MS Chief, Division of Pediatric Cardiology, University of Louisville School of Medicine; Director, Congenital Heart Center, Kosair Children's Hospital

Christopher Johnsrude, MD, MS is a member of the following medical societies: American Academy of Pediatrics, American College of Cardiology

Disclosure: Nothing to disclose.


The authors and editors of eMedicine gratefully acknowledge the contributions of Samuel Ritter, MD, to the original writing and development of this article.

  1. Hanedan Onan S, Baykan A, Sezer S, et al. Evaluation of Cardiovascular Changes in Children with BAVs. Pediatr Cardiol. 2015 Nov 20. [Medline].

  2. Gentles TL, Colan SD, Wilson NJ, et al. Left ventricular mechanics during and after acute rheumatic fever: contractile dysfunction is closely related to valve regurgitation. J Am Coll Cardiol. 2001 Jan. 37(1):201-7. [Medline].

  3. Lowenthal A, Tacy TA, Behzadian F, Punn R. Echocardiographic predictors of early postsurgical myocardial dysfunction in pediatric patients with aortic valve insufficiency. Pediatr Cardiol. 2013 Aug. 34(6):1335-43. [Medline].

  4. [Guideline] Bonow RO, Carabello BA, Chatterjee K, et al. 2008 Focused update incorporated into the ACC/AHA 2006 guidelines for the management of patients with valvular heart disease: a report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines (Writing Committee to Revise the 1998 Guidelines for the Management of Patients With Valvular Heart Disease): endorsed by the Society of Cardiovascular Anesthesiologists, Society for Cardiovascular Angiography and Interventions, and Society of Thoracic Surgeons. Circulation. 2008 Oct 7. 118(15):e523-661. [Medline].

  5. Scognamiglio R, Rahimtoola SH, Fasoli G, et al. Nifedipine in asymptomatic patients with severe aortic regurgitation and normal left ventricular function. N Engl J Med. 1994 Sep 15. 331(11):689-94. [Medline].

  6. Pasquali SK, Shera D, Wernovsky G, et al. Midterm outcomes and predictors of reintervention after the Ross procedure in infants, children, and young adults. J Thorac Cardiovasc Surg. 2007 Apr. 133(4):893-9. [Medline].

  7. Kouchoukos NT, Masetti P, Nickerson NJ, et al. The Ross procedure: long-term clinical and echocardiographic follow-up. Ann Thorac Surg. 2004 Sep. 78(3):773-81; discussion 773-81. [Medline].

  8. Brancaccio G, Polito A, Hoxha S, Gandolfo F, Giannico S, Amodeo A, et al. The Ross procedure in patients aged less than 18 years: The midterm results. J Thorac Cardiovasc Surg. 2013 Mar 12. [Medline].

  9. Elkins RC, Lane MM, McCue C. Ross operation in children: late results. J Heart Valve Dis. 2001 Nov. 10(6):736-41. [Medline].

  10. Lupinetti FM, Duncan BW, Lewin M, Dyamenahalli U, Rosenthal GL. Comparison of autograft and allograft aortic valve replacement in children. J Thorac Cardiovasc Surg. 2003 Jul. 126(1):240-6. [Medline].

  11. Elkins RC, Knott-Craig CJ, McCue C, Lane MM. Congenital aortic valve disease. Improved survival and quality of life. Ann Surg. 1997 May. 225(5):503-10; discussion 510-1. [Medline].

  12. Luciani GB, Favaro A, Casali G, Santini F, Mazzucco A. Ross operation in the young: a ten-year experience. Ann Thorac Surg. 2005 Dec. 80(6):2271-7. [Medline].

  13. Takkenberg JJ, van Herwerden LA, Eijkemans MJ, Bekkers JA, Bogers AJ. Evolution of allograft aortic valve replacement over 13 years: results of 275 procedures. Eur J Cardiothorac Surg. 2002 Apr. 21(4):683-91; discussion 691. [Medline].

  14. [Guideline] Wilson W, Taubert KA, Gewitz M, et al. Prevention of infective endocarditis: guidelines from the American Heart Association: a guideline from the American Heart Association Rheumatic Fever, Endocarditis, and Kawasaki Disease Committee, Council on Cardiovascular Disease in the Young, and the Council on Clinical Cardiology, Council on Cardiovascular Surgery and Anesthesia, and the Quality of Care and Outcomes Research Interdisciplinary Working Group. Circulation. 2007 Oct 9. 116(15):1736-54. [Medline].

  15. Cox DA, Walton K, Bartz PJ, Tweddell JS, Frommelt PC, Earing MG. Predicting left ventricular recovery after replacement of a regurgitant aortic valve in pediatric and young adult patients: is it ever too late?. Pediatr Cardiol. 2013 Mar. 34(3):694-9. [Medline].

  16. d'Udekem Y, Siddiqui J, Seaman CS, Konstantinov IE, Galati JC, Cheung MM, et al. Long-term results of a strategy of aortic valve repair in the pediatric population. J Thorac Cardiovasc Surg. 2013 Feb. 145(2):461-7; discussion 467-9. [Medline].

  17. Bolen JL, Alderman EL. Hemodynamic consequences of afterload reduction in patients with chronic aortic regurgitation. Circulation. 1976 May. 53(5):879-83. [Medline].

  18. Bonow RO, Carabello B, de Leon AC, et al. ACC/AHA Guidelines for the Management of Patients With Valvular Heart Disease. Executive Summary. A report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines (Committee on Management of Patients With Val. J Heart Valve Dis. 1998 Nov. 7(6):672-707. [Medline].

  19. Bonow RO, Dodd JT, Maron BJ, et al. Long-term serial changes in left ventricular function and reversal of ventricular dilatation after valve replacement for chronic aortic regurgitation. Circulation. 1988 Nov. 78(5 Pt 1):1108-20. [Medline].

  20. Bonow RO, Rosing DR, Maron BJ, et al. Reversal of left ventricular dysfunction after aortic valve replacement for chronic aortic regurgitation: influence of duration of preoperative left ventricular dysfunction. Circulation. 1984 Oct. 70(4):570-9. [Medline].

  21. Braunwald. Heart Disease: A Textbook of Cardiovascular Medicine. 1997. Vol 1: 1045-60.

  22. Cameron DE. Surgical techniques. Ascending aorta. Cardiol Clin. 1999 Nov. 17(4):739-50. [Medline].

  23. Carabello BA. Vasodilators in aortic regurgitation--where is the evidence of their effectiveness?. N Engl J Med. 2005 Sep 29. 353(13):1400-2. [Medline].

  24. Carabello BA, Crawford FA Jr. Valvular heart disease. N Engl J Med. 1997 Jul 3. 337(1):32-41. [Medline].

  25. David TE, Ivanov J, Armstrong S, Feindel CM, Webb GD. Aortic valve-sparing operations in patients with aneurysms of the aortic root or ascending aorta. Ann Thorac Surg. 2002 Nov. 74(5):S1758-61; discussion S1792-9. [Medline].

  26. Ekery DL, Davidoff R. Aortic regurgitation: quantitative methods by echocardiography. Echocardiography. 2000 Apr. 17(3):293-302. [Medline].

  27. Elkins RC. The Ross operation: applications to children. Semin Thorac Cardiovasc Surg. 1996 Oct. 8(4):345-9. [Medline].

  28. Fedderly RT. Left ventricular outflow obstruction. Pediatr Clin North Am. 1999 Apr. 46(2):369-84. [Medline].

  29. Fioretti P, Benussi B, Scardi S, et al. Afterload reduction with nifedipine in aortic insufficiency. Am J Cardiol. 1982 May. 49(7):1728-32. [Medline].

  30. Grande KJ, Cochran RP, Reinhall PG, Kunzelman KS. Mechanisms of aortic valve incompetence: finite element modeling of aortic root dilatation. Ann Thorac Surg. 2000 Jun. 69(6):1851-7. [Medline].

  31. Greenberg BH, DeMots H, Murphy E, Rahimtoola S. Beneficial effects of hydralazine on rest and exercise hemodynamics in patients with chronic severe aortic insufficiency. Circulation. 1980 Jul. 62(1):49-55. [Medline].

  32. Grocott-Mason RM, Lund O, Elwidaa H, et al. Long-term results after aortic valve replacement in patients with congestive heart failure. Homografts vs prosthetic valves. Eur Heart J. 2000 Oct. 21(20):1698-707. [Medline].

  33. Harris KM, Malenka DJ, Haney MF, et al. Improvement in mitral regurgitation after aortic valve replacement. Am J Cardiol. 1997 Sep 15. 80(6):741-5. [Medline].

  34. Ismailov RM, Weiss HB, Ness RB, et al. Blunt cardiac injury associated with cardiac valve insufficiency: trauma links to chronic disease?. Injury. 2005 Sep. 36(9):1022-8. [Medline].

  35. Katz NM. Current surgical treatment of valvular heart disease. Am Fam Physician. 1995 Aug. 52(2):559-68. [Medline].

  36. Levine HJ, Gaasch WH. Vasoactive drugs in chronic regurgitant lesions of the mitral and aortic valves. J Am Coll Cardiol. 1996 Nov 1. 28(5):1083-91. [Medline].

  37. Pasquali SK, Cohen MS, Shera D, et al. The relationship between neo-aortic root dilation, insufficiency, and reintervention following the Ross procedure in infants, children, and young adults. J Am Coll Cardiol. 2007 May 1. 49(17):1806-12. [Medline].

  38. Shah PM, Graham BM. Management of aortic stenosis: is cardiac catheterization necessary?. Am J Cardiol. 1991 May 1. 67(11):1031-2. [Medline].

  39. Shiota T, Jones M, Aida S, et al. Calculation of aortic regurgitant volume by a new digital Doppler color flow mapping method: an animal study with quantified chronic aortic regurgitation. J Am Coll Cardiol. 1997 Sep. 30(3):834-42. [Medline].

Aortic regurgitation. Color Doppler echocardiogram.
All material on this website is protected by copyright, Copyright © 1994-2016 by WebMD LLC. This website also contains material copyrighted by 3rd parties.