Close
New

Medscape is available in 5 Language Editions – Choose your Edition here.

 

Pediatric Complete Atrioventricular Septal Defects Clinical Presentation

  • Author: Michael D Pettersen, MD; Chief Editor: P Syamasundar Rao, MD  more...
 
Updated: Mar 02, 2016
 

History

Tachypnea, repeated respiratory infections, poor feeding, and failure to thrive are frequent symptoms in patients with complete atrioventricular septal defect (AVSD) and large left-to-right shunts. These symptoms are usually present by 6-8 weeks and due to blood flow through the large interventricular communication with or without incompetence of the common atrioventricular valve.

Pulmonary vascular disease results from damage caused by excessive pulmonary flow and elevated pulmonary artery pressure due to the large ventricular septal defect (VSD). Irreversible pulmonary vascular disease may be present by age 2 years or, in rare cases, earlier.

Next

Physical

General physical examination may show characteristics of Down syndrome, including flat facial profile, upslanting palpebral fissures, prominent inner epicanthal folds, Brushfield spots, protuberant tongue, abnormal palmar creases, and fifth finger clinobrachydactyly. Inspection may reveal pallor or Harrison grooves (horizontal depression along lower border of chest at diaphragm insertion site due to chronic tachypnea).[25] Failure to thrive is common due to excessive metabolic cardiovascular requirements and poor caloric intake (due to tachypnea) is common.

The cardiac examination is remarkable for and overactive precordium. The volume and pressure overload on the right ventricle result in a prominent systolic heave along the left sternal border and subxiphoid regions. The pulmonary component of the second heart sound may be palpable at the left second intercostal space. Regurgitation of the atrioventricular valve may uncommonly result in a palpable apical thrill.

The first heart sound is single and often accentuated. The second heart sound is narrowly split, with an accentuated pulmonary component. A crescendo-decrescendo murmur may be audible at the upper left sternal border due to increased blood flow through a normal pulmonary valve. A mid diastolic rumble may be audible at the lower left sternal border and apex due to the increased flow across the common atrioventricular valve. A holosystolic murmur is often appreciated at the apex due to atrioventricular valve insufficiency. Because the VSD in complete atrioventricular septal defect is large and unrestrictive, it is not associated with a murmur.

When pulmonary vascular resistance (PVR) is elevated, the systolic murmur may not be prominent, and the diastolic rumble may disappear, reflecting less left-to-right shunt. This finding can occur in the infant in whom PVR has never fallen or in the older child with developing pulmonary vascular obstructive disease (PVOD), for whom the improvement in congestive heart failure (CHF) symptoms is an ominous finding.

In patients with advanced PVOD, the left parasternal impulse is prominent, S2 may be palpable, and the systolic murmur may be soft and short. A high-pitched decrescendo diastolic murmur of pulmonary insufficiency (Graham Steell murmur) may be detected at the left upper sternal border, reflecting severely elevated PVR.

Factors that can influence hemodynamics in Down syndrome include chronic nasopharyngeal obstruction, relative hypoventilation, carbon dioxide retention, and sleep apnea. Nonspecific CHF signs that may be seen include hepatosplenomegaly, pulmonary rales, and tachypnea. Skull erosion and striations have been noted from venous distension and increased blood volume.

Previous
Next

Causes

Trisomy 21 (Down syndrome) is the most frequently associated genetic abnormality with complete atrioventricular septal defect, although it may also occur in association with trisomy 13 and trisomy 18. In patients without trisomy 21 who have common atrioventricular canal (CAVC) defects, a genetic locus on chromosome 1 can account for the disorder in some families.[26]

Interstitial deletion on chromosome 16 can be associated with atrioventricular septal defect. Endocardial cushion tissue seems to function as an adhesive for myocardial structures. Fibroblasts of endocardial cushions in trisomy 21 tend to be more adhesive, possibly leading to cardiac malformations. Atrioventricular septal defect may be seen with other less common syndromes, such as Dandy-Walker malformation, Joubert syndrome, and Ritscher-Schintal (craniocerebellocardiac) syndrome. An orocardiodigital syndrome consisting of tongue hamartomas, polysyndactyly, and atrioventricular septal defect has been described.

Atrioventricular septal defect is one of several cardiac abnormalities commonly seen with heterotaxy syndromes (asplenia and occasionally with polysplenia). Other rare combinations include atrioventricular septal defect with total anomalous pulmonary venous return and atrioventricular septal defect with Ebstein anomaly. Uncommon associations with atrioventricular septal defect include DiGeorge syndrome and coloboma of the eye, heart defects, atresia of the choanae, renal anomalies and retardation of growth and/or development, genital anomalies in males such as micropenis or cryptorchidism, and ear abnormalities or deafness (CHARGE) syndrome.

The presence of vascular endothelial growth factor (VEGF) gene mutations has been associated with atrioventricular septal defect.[27] The prevalence of the VEGF +405C allele was higher in patients with CHD than in control subjects (0.42 vs 0.21; P < .05). The presence of VEGF +405C presented increased risk for CHD (odds ratio [OR], 1.72; 95% CI, 1.32–2.26).

Advanced maternal age is a risk factor for Down syndrome, and at least two thirds of patients with uncomplicated atrioventricular septal defect have trisomy 21.

Previous
 
 
Contributor Information and Disclosures
Author

Michael D Pettersen, MD Consulting Staff, Rocky Mountain Pediatric Cardiology, Pediatrix Medical Group

Michael D Pettersen, MD is a member of the following medical societies: American Society of Echocardiography

Disclosure: Received income in an amount equal to or greater than $250 from: Fuji Medical Imaging.

Specialty Editor Board

Mary L Windle, PharmD Adjunct Associate Professor, University of Nebraska Medical Center College of Pharmacy; Editor-in-Chief, Medscape Drug Reference

Disclosure: Nothing to disclose.

Alvin J Chin, MD Emeritus Professor of Pediatrics, University of Pennsylvania School of Medicine

Alvin J Chin, MD is a member of the following medical societies: American Association for the Advancement of Science, Society for Developmental Biology, American Heart Association

Disclosure: Nothing to disclose.

Chief Editor

P Syamasundar Rao, MD Professor of Pediatrics and Medicine, Division of Cardiology, Emeritus Chief of Pediatric Cardiology, University of Texas Medical School at Houston and Children's Memorial Hermann Hospital

P Syamasundar Rao, MD is a member of the following medical societies: American Academy of Pediatrics, American Pediatric Society, American College of Cardiology, American Heart Association, Society for Cardiovascular Angiography and Interventions, Society for Pediatric Research

Disclosure: Nothing to disclose.

Additional Contributors

Paul M Seib, MD Associate Professor of Pediatrics, University of Arkansas for Medical Sciences; Medical Director, Cardiac Catheterization Laboratory, Co-Medical Director, Cardiovascular Intensive Care Unit, Arkansas Children's Hospital

Paul M Seib, MD is a member of the following medical societies: American Academy of Pediatrics, American College of Cardiology, American Heart Association, Arkansas Medical Society, International Society for Heart and Lung Transplantation, Society for Cardiovascular Angiography and Interventions

Disclosure: Nothing to disclose.

Acknowledgements

The authors and editors of Medscape Drugs & Diseases gratefully acknowledge the contributions of previous authors Michael McConnell, MD, and John Scheitler, MD, to the original writing and development of this article.

References
  1. Van Praagh S, Vangi V, Sul JH, et al. Tricuspid atresia or severe stenosis with partial common atrioventricular canal: anatomic data, clinical profile and surgical considerations. J Am Coll Cardiol. 1991 Mar 15. 17(4):932-43. [Medline].

  2. Wenink AC, Zevallos JC. Developmental aspects of atrioventricular septal defects. Int J Cardiol. 1988 Jan. 18(1):65-78. [Medline].

  3. Moore KL, Persaud TVN. Before We are Born. 5th ed. Philidelphia, PA: WB Saunders; 1998.

  4. Wenink AC, Zevallos JC. Developmental aspects of atrioventricular septal defects. Int J Cardiol. 1988 Jan. 18(1):65-78. [Medline].

  5. Rastelli GC, Kirklin JW, Titus JL. Anatomic observations on complete form of persistent common atrioventricular canal with special reference to atrioventricular valves. Mayo Clin Proc. 1966. 41:296-308.

  6. Bharati S, Lev M. Common Atrioventricular Orifice - Complete Type. The Pathology of Congenital Heart Disease: A Personal Experience with More Than 6,300 Congenitally Malformed Hearts. Armonk, NY: Futura Publinshing Company, Inc; 1996. 553-586.

  7. Karl TR. Atrioventricular septal defect with tetralogy of Fallot or double-outlet right ventricle: surgical considerations. Semin Thorac Cardiovasc Surg. 1997 Jan. 9(1):26-34. [Medline].

  8. Hoffman JIE. Incidence of congenital heart disease: I. Postnatal incidence. Pediatr Cardiol. 1995. 16:103-113.

  9. Rosenthal GL, Wilson PD, Permutt T, Boughman JA, Ferencz C. Birth weight and cardiovascular malformations: a population-based study. The Baltimore-Washington Infant Study. Am J Epidemiol. 1991 Jun 15. 133(12):1273-81. [Medline].

  10. Hoffman JIE. Incidence of congenital heart disease: II. Prenatal incidence. Pediatr Cardiol. 1995. 155-165.

  11. Freeman SB, Taft LF, Dooley KJ, et al. Population-based study of congenital heart defects in Down syndrome. Am J Med Genet. 1998 Nov 16. 80(3):213-7. [Medline].

  12. Digilio MC, Marino B, Cicini MP, et al. Risk of congenital heart defects in relatives of patients with atrioventricular canal. Am J Dis Child. 1993 Dec. 147(12):1295-7. [Medline].

  13. Newfeld EA, Sher M, Paul MH, Nikaidoh H. Pulmonary vascular disease in complete atrioventricular canal defect. Am J Cardiol. 1977 May 4. 39(5):721-6. [Medline].

  14. Kozak MF, Kozak AC, Marchi CH, et al. Factors associated with moderate or severe left atrioventricular valve regurgitation within 30 days of repair of complete atrioventricular septal defect. Rev Bras Cir Cardiovasc. 2015 Jul-Sep. 30 (3):304-10. [Medline].

  15. Ginde S, Lam J, Hill GD, et al. Long-term outcomes after surgical repair of complete atrioventricular septal defect. J Thorac Cardiovasc Surg. 2015 Aug. 150 (2):369-74. [Medline].

  16. Harmandar B, Aydemir NA, Karaci AR, Sasmazel A, Saritas T, Bilal MS, et al. Results for surgical correction of complete atrioventricular septal defect: associations with age, surgical era, and technique. J Card Surg. 2012 Nov. 27(6):745-53. [Medline].

  17. Atz AM, Hawkins JA, Lu M, et al. Surgical management of complete atrioventricular septal defect: Associations with surgical technique, age, and trisomy 21. J Thorac Cardiovasc Surg. 2011 Jun. 141(6):1371-9. [Medline]. [Full Text].

  18. Tweddell JS, Litwin SB, Berger S, et al. Twenty-year experience with repair of complete atrioventricular septal defects. Ann Thorac Surg. 1996 Aug. 62(2):419-24. [Medline].

  19. Miller A, Siffel C, Lu C, Riehle-Colarusso T, Frias JL, Correa A. Long-term survival of infants with atrioventricular septal defects. J Pediatr. 2010 Jun. 156(6):994-1000. [Medline].

  20. Bando K, Turrentine MW, Sun K, et al. Surgical management of complete atrioventricular septal defects. A twenty-year experience. J Thorac Cardiovasc Surg. 1995 Nov. 110(5):1543-52; discussion 1552-4. [Medline].

  21. McElhinney DB, Reddy VM, Silverman NH, Hanley FL. Accessory and anomalous atrioventricular valvar tissue causing outflow tract obstruction: surgical implications of a heterogeneous and complex problem. J Am Coll Cardiol. 1998 Nov 15. 32(6):1741-8. [Medline].

  22. Alsoufi B, Al-Halees Z, Khouqeer F, Canver CC, et al. Results of Left Atrioventricular Valve Reoperations Following Previous Repair of Atrioventricular Septal Defects. J Card Surg. 2009 Jun 15. [Medline].

  23. Stulak JM, Burkhart HM, Dearani JA, et al. Reoperations after initial repair of complete atrioventricular septal defect. Ann Thorac Surg. 2009 Jun. 87(6):1872-7; discussion 1877-8. [Medline].

  24. Reeder GS, Danielson GK, Seward JB, et al. Fixed subaortic stenosis in atrioventricular canal defect: a Doppler echocardiographic study. J Am Coll Cardiol. 1992 Aug. 20(2):386-94. [Medline].

  25. Perloff JK. The Clinical Recognition of Congenital Heart Disease. Philadelphia, PA: WB Saunders; 1987. 322-38.

  26. Sheffield VC, et al. Identification of a complex congenital heart defect susceptibility locus by using DNA pooling and shared segment analysis. Hum Molec Genet. 1997. 6(1):117-121.

  27. Vannay A, Vasarhelyi B, Kornyei M, et al. Single-nucleotide polymorphisms of VEGF gene are associated with risk of congenital valvuloseptal heart defects. Am Heart J. 2006 Apr. 151(4):878-81. [Medline]. [Full Text].

  28. Cabrera A, Pastor E, Galdeano JM, et al. Cross-sectional echocardiography in the diagnosis of atrioventricular septal defect. Int J Cardiol. 1990 Jul. 28(1):19-23. [Medline].

  29. Chin AJ, Bierman FZ, Sanders SP, et al. Subxyphoid 2-dimensional echocardiographic identification of left ventricular papillary muscle anomalies in complete common atrioventricular canal. Am J Cardiol. 1983 Jun. 51(10):1695-9. [Medline].

  30. Silverman NH, Zuberbuhler JR, Anderson RH. Atrioventricular septal defects: cross-sectional echocardiographic and morphologic comparisons. Int J Cardiol. 1986 Dec. 13(3):309-31. [Medline].

  31. Del Pasqua A, Sanders SP, de Zorzi A, et al. Impact of three-dimensional echocardiography in complex congenital heart defect cases: the surgical view. Pediatr Cardiol. 2009 Apr. 30(3):293-300. [Medline].

  32. Takahashi K, Guerra V, Roman KS, Nii M, Redington A, Smallhorn JF. Three-dimensional echocardiography improves the understanding of the mechanisms and site of left atrioventricular valve regurgitation in atrioventricular septal defect. J Am Soc Echocardiogr. 2006 Dec. 19(12):1502-10. [Medline].

  33. Takahashi K, Mackie AS, Thompson R, Al-Naami G, Inage A, Rebeyka IM, et al. Quantitative real-time three-dimensional echocardiography provides new insight into the mechanisms of mitral valve regurgitation post-repair of atrioventricular septal defect. J Am Soc Echocardiogr. 2012 Nov. 25(11):1231-44. [Medline].

  34. Najm HK, Coles JG, Endo M, et al. Complete atrioventricular septal defects: results of repair, risk factors, and freedom from reoperation. Circulation. 1997 Nov 4. 96(9 Suppl):II-311-5. [Medline].

  35. Kaza AK, Colan SD, Jaggers J, et al. Surgical interventions for atrioventricular septal defect subtypes: the pediatric heart network experience. Ann Thorac Surg. 2011 Oct. 92(4):1468-75. [Medline].

  36. Ten Harkel AD, Cromme-Dijkhuis AH, Heinerman BC, et al. Development of left atrioventricular valve regurgitation after correction of atrioventricular septal defect. Ann Thorac Surg. 2005 Feb. 79(2):607-12. [Medline].

  37. Suzuki T, Bove EL, Devaney EJ, Ishizaka T, Goldberg CS, Hirsch JC. Results of definitive repair of complete atrioventricular septal defect in neonates and infants. Ann Thorac Surg. 2008 Aug. 86(2):596-602. [Medline].

  38. Myers PO, del Nido PJ, Marx GR, Emani S, Mayer JE Jr, Pigula FA. Improving left ventricular outflow tract obstruction repair in common atrioventricular canal defects. Ann Thorac Surg. 2012 Aug. 94(2):599-605; discussion 605. [Medline].

  39. Buchhorn R, Hulpke-Wette M, Ruschewski W, et al. Effects of therapeutic beta blockade on myocardial function and cardiac remodelling in congenital cardiac disease. Cardiol Young. 2003 Feb. 13(1):36-43. [Medline].

  40. [Guideline] Wilson W, Taubert KA, Gewitz M, et al. Prevention of Infective Endocarditis. Guidelines From the American Heart Association. A Guideline From the American Heart Association Rheumatic Fever, Endocarditis, and Kawasaki Disease Committee, Council on Cardiovascular Disease in the Young, and the Council on Clinical Cardiology, Council on Cardiovascular Surgery and Anesthesia, and the Quality of Care and Outcomes Research Interdisciplinary Working Group. Circulation. 2007 Apr 19. [Medline].

  41. Alexi-Meskishvili V, Ishino K, Dahnert I, et al. Correction of complete atrioventricular septal defects with the double-patch technique and cleft closure. Ann Thorac Surg. 1996 Aug. 62(2):519-24; discussion 524-5. [Medline].

  42. Atz AM, Hawkins JA, Lu M, Cohen MS, Colan SD, Jaggers J. Surgical management of complete atrioventricular septal defect: associations with surgical technique, age, and trisomy 21. J Thorac Cardiovasc Surg. 2011 Jun. 141(6):1371-9. [Medline].

  43. Backer CL, Mavroudis C, Alboliras ET, Zales VR. Repair of complete atrioventricular canal defects: results with the two- patch technique. Ann Thorac Surg. 1995 Sep. 60(3):530-7. [Medline].

  44. Capouya ER, Laks H, Drinkwater DC Jr, et al. Management of the left atrioventricular valve in the repair of complete atrioventricular septal defects. J Thorac Cardiovasc Surg. 1992 Jul. 104(1):196-201; discussion 201-3. [Medline].

  45. Cousineua AJ, Lauer RM, Pierpont ME, et al. Linkage analysis of autosomal dominant atrioventricular canal defects: exclusion of chromosome 21. Human Genetics. 1994. 93(2):103-8. [Medline].

  46. DeLeon SY, Ilbawi MN, Wilson WR Jr, et al. Surgical options in subaortic stenosis associated with endocardial cushion defects. Ann Thorac Surg. 1991 Nov. 52(5):1076-82; discussion 1082-3. [Medline].

  47. Eisenberg LM, Markwald RR. Molecular regulation of atrioventricular valvuloseptal morphogenesis. Circ Res. 1995 Jul. 77(1):1-6. [Medline].

  48. Formigari R, Di Donato RM, Gargiulo G, et al. Better surgical prognosis for patients with complete atrioventricular septal defect and Down's syndrome. Ann Thorac Surg. 2004 Aug. 78(2):666-72; discussion 672. [Medline].

  49. Gembruch U, Knopfle G, Chatterjee et al. Prenatal diagnosis of atrioventricular canal malformations with up-to-date echocardiographic technology: report of 14 cases. Am Heart J. 1991 May. 121(5):1489-97. [Medline].

  50. Hanley FL, Fenton KN, Jonas RA, et al. Surgical repair of complete atrioventricular canal defects in infancy. Twenty-year trends. J Thorac Cardiovasc Surg. 1993 Sep. 106(3):387-94; discussion 394-7. [Medline].

  51. Jacobstein MD, Fletcher BD, Goldstein S, Riemenschneider TA. Evaluation of atrioventricular septal defect by magnetic resonance imaging. Am J Cardiol. 1985 Apr 15. 55(9):1158-61. [Medline].

  52. Kosaki K, Curry CJ, Roeder E, Jones KL. Ritscher-Schinzel (3C) syndrome: documentation of the phenotype. Am J Med Genet. 1997 Feb 11. 68(4):421-7. [Medline].

  53. Kurnit DM, Aldridge JF, Matsuoka R, Matthysse S. Increased adhesiveness of trisomy 21 cells and atrioventricular canal malformations in Down syndrome: a stochastic model. Am J Med Genet. 1985 Feb. 20(2):385-99. [Medline].

  54. Lange A, Mankad P, Walayat M, et al. Transthoracic three-dimensional echocardiography in the preoperative assessment of atrioventricular septal defect morphology. Am J Cardiol. 2000 Mar 1. 85(5):630-5. [Medline].

  55. LeBlanc JG, Williams WG, Freedom RM, Trusler GA. Results of total correction in complete atrioventricular septal defects with congenital or surgically induced right ventricular outflow tract obstruction. Ann Thorac Surg. 1986 Apr. 41(4):387-91. [Medline].

  56. Leversha AM, Wilson NJ, Clarkson PM, et al. Efficacy and dosage of enalapril in congenital and acquired heart disease. Arch Dis Child. 1994 Jan. 70(1):35-9. [Medline].

  57. Maslen CL. Molecular genetics of atrioventricular septal defects. Curr Opin Cardiol. 2004 May. 19(3):205-10. [Medline].

  58. Miyamura H, Eguchi S, Watanabe H, et al. Total circular annuloplasty with absorbable suture for the repair of left atrioventricular valve regurgitation in atrioventricular septal defect. J Thorac Cardiovasc Surg. 1994 Jun. 107(6):1428-31. [Medline].

  59. Rizzoli G, Mazzucco A, Maizza F, et al. Does Down syndrome affect prognosis of surgically managed atrioventricular canal defects?. J Thorac Cardiovasc Surg. 1992 Oct. 104(4):945-53. [Medline].

  60. Roach RM, Tandon R, Moller JH, Edwards JE. Ebstein's anomaly of the tricuspid valve in persistent common atrioventricular canal. Am J Cardiol. 1984 Feb 1. 53(4):640-2. [Medline].

  61. Rosenthal GL, Wilson PD, Permutt T, et al. Birth weight and cardiovascular malformations: a population-based study. The Baltimore-Washington Infant Study. Am J Epidemiol. 1991 Jun 15. 133(12):1273-81. [Medline].

  62. Ross DA, Nanton M, Gillis DA, Murphy DA. Atrioventricular canal defects: results of repair in the current era. J Card Surg. 1991 Sep. 6(3):367-72. [Medline].

  63. Sakamoto K, Galletti L, Touchot A, et al. Two-stage correction of transposition of great arteries with complete atrioventricular canal. Ann Thorac Surg. 1998 Jan. 65(1):250-2. [Medline].

  64. Sigfusson G, Ettedgui JA, Silverman NH, Anderson RH. Is a cleft in the anterior leaflet of an otherwise normal mitral valve an atrioventricular canal malformation?. J Am Coll Cardiol. 1995 Aug. 26(2):508-15. [Medline].

  65. Sim EK, Black MD, Smallhorn J, et al. Surgical repair of complete atrioventricular septal canal defects with absent posterior leaflet. Ann Thorac Surg. 1995 Nov. 60(5):1399-400. [Medline].

  66. Tedziagolska M. Two-patch repair of atrioventricular canal. Ann Thorac Surg. 1996 May. 61(5):1589-90. [Medline].

  67. Tennant SN, Hammon JW Jr, Bender HW Jr, et al. Familial clustering of atrioventricular canal defects. Am Heart J. 1984 Jul. 108(1):175-7. [Medline].

  68. Torfs CP, Christianson RE. Anomalies in Down syndrome individuals in a large population-based registry. Am J Med Genet. 1998 Jun 5. 77(5):431-8. [Medline].

  69. van Son JA, Kinzel P, Mohr FW. Repair of Ebstein's anomaly associated with partial atrioventricular canal. J Card Surg. 1997 Nov-Dec. 12(6):434-6. [Medline].

  70. van Son JA, Van Praagh R, Falk V, Mohr FW. Pericardial patch augmentation of the tissue-deficient mitral valve in common atrioventricular canal. J Thorac Cardiovasc Surg. 1996 Oct. 112(4):1117-9. [Medline].

  71. Yamaki S, Yasui H, Kado H, et al. Pulmonary vascular disease and operative indications in complete atrioventricular canal defect in early infancy. J Thorac Cardiovasc Surg. 1993 Sep. 106(3):398-405. [Medline].

  72. Zellers TM, Zehr R, Weinstein E, et al. Two-dimensional and Doppler echocardiography alone can adequately define preoperative anatomy and hemodynamic status before repair of complete atrioventricular septal defect in infants 111J Am Coll Cardiol</i>. 1994 Nov 15. 24(6):1565-70. [Medline].

  73. St Louis JD, Jodhka U, Jacobs JP, et al. Contemporary outcomes of complete atrioventricular septal defect repair: analysis of the Society of Thoracic Surgeons Congenital Heart Surgery Database. J Thorac Cardiovasc Surg. 2014 Dec. 148(6):2526-31. [Medline].

  74. Zhong PP, Gu YQ, Wang AC, et al. [Complete atrioventricular septal defect: a clinicopathologic study of 35 cases] [Chinese]. Zhonghua Bing Li Xue Za Zhi. 2016 Feb 8. 45 (2):107-10. [Medline].

 
Previous
Next
 
Atrioventricular (A-V) valve leaflets viewed from the cardiac apex in normal valves (A) and in the Rastelli type A complete form of common A-V canal (B). In A, the normal tricuspid valve (TV) has anterior (AL), septal (SL), and posterior (PL) leaflets. A normal mitral valve (MV) has ALs and PLs.In B, the superior cushion–derived leaflet bridges the ventricular septum and attaches to the papillary muscle of the conus at its rightmost extent. A right superior leaflet (RSL) typically attaches to the papillary muscle of the conus and to the anterior papillary muscle of the right ventricle (RV), and a right lateral leaflet (RLL) attaches to the anterior papillary muscle of the RV and to the posterior papillary muscle of the RV. The inferior cushion–derived bridging leaflet is usually cleft, giving the appearance of a right inferior leaflet (RIL) and a left inferior leaflet (LIL).
Apical 4-chamber echocardiographic image demonstrating a complete atrioventricular septal defect. A large primum atrial septal defect, a large inlet ventricular septal defect, and a single common orifice atrioventricular valve are noted.
Apical 4-chamber echocardiographic image with color Doppler demonstrating moderately-severe insufficiency of the common atrioventricular valve.
Parasternal long axis echocardiographic image of a complete atrioventricular septal defect. A large inlet ventricular septal defect is seen. Accessory atrioventricular valve tissue is visualized within the left ventricular outflow tract.
Subcostal sagittal echocardiographic image demonstrating the common atrioventricular valve. The anterior bridging leaflet inserts onto the interventricular septum consistent with a Rastelli type A valve.
 
 
 
All material on this website is protected by copyright, Copyright © 1994-2016 by WebMD LLC. This website also contains material copyrighted by 3rd parties.