Medscape is available in 5 Language Editions – Choose your Edition here.


Pediatric Partial and Intermediate Atrioventricular Septal Defects Treatment & Management

  • Author: M Silvana Horenstein, MD; Chief Editor: P Syamasundar Rao, MD  more...
Updated: Mar 27, 2014

Medical Care

Treatment for congestive heart failure (CHF) is occasionally required if mitral regurgitation (MR) cannot be adequately surgically reduced.

Follow-up in patients with atrioventricular septal defect (AVSD) is determined on an individual basis, and the frequency depends on the persistence and severity of atrioventricular valve regurgitation or other abnormalities.

Chest radiography, ECG, and echocardiography should be performed, if the physical examination warrants.


Obtain consultations with the following specialists:

  • Pediatric cardiologist
  • Cardiovascular surgeon
  • Geneticist, if an abnormality is suspected (eg, Down syndrome)

Surgical Care

Management of partial atrioventricular septal defect (AVSD) is primarily surgical, and repair includes patch closure of the atrial septal defect (ASD), mitral valve annuloplasty, or cleft closure. Other defects (eg, left ventricular outflow tract [LVOT] obstruction, patent ductus arteriosus [PDA]) may require repair during the same operation.

Repair is usually electively performed in children aged 2-5 years, unless significant mitral regurgitation (MR) is present, in which case earlier repair is indicated. However, in the current era, repair of AVSD can be successfully performed in patients who weigh less than 5 kg.[11, 12, 13]

Surgical morbidity

Severe MR develops in a significant number of patients after correction of ASD. In fact, MR is the most common residual defect[14] and therefore, it is the most frequent indication for reoperation in patients after repair of both partial and complete AVSD.[15, 16, 17]

LVOT obstruction may not be evident for years after the initial repair. LVOT obstruction is the second most common indication for reoperation in patients with partial AVSD.[18, 19]

Preoperative severe left-sided atrioventricular valve regurgitation and associated valve malformations are important risk factors for postoperative development of MR.[15, 20]

According to another study, predictors for reoperation include postoperative MR, presence of major associated cardiac malformations, associated left atrioventricular valve malformations, partial or absent left atrioventricular valve cleft closure, and a weight of less than 5 kg.[11]

When the left-sided atrioventricular valve requires replacement because of unacceptable degrees of regurgitation, complete atrioventricular block (as well as higher mortality) are expected.[21]

Spontaneous regression of left-sided atrioventricular valve regurgitation after the immediate postoperative period has been described, thus avoiding the need for reoperation.[15]

Surgical mortality

Depending on the surgical series, early postoperative mortality rate is less than 3% in patients with mostly uncomplicated partial AVSD.[15, 22] However, a multicenter study showed that the current survival rate from all types of AVSD repairs (in which 21.5% of patients had partial AVSDs and almost 12% had intermediate AVSDs) was 98-99%, of which 96-97% have no major complications.[23]

Poorer survival was seen in patients with major associated cardiac malformations and pulmonary hypertension, with an early postoperative mortality of 8%.[11] Poorer survival was also observed in patients who required reoperation, regardless of whether the procedure entailed AV valve repair or replacement.[19]

Contributor Information and Disclosures

M Silvana Horenstein, MD Assistant Professor, Department of Pediatrics, University of Texas Medical School at Houston; Medical Doctor Consultant, Legacy Department, Best Doctors, Inc

M Silvana Horenstein, MD is a member of the following medical societies: American Academy of Pediatrics, American College of Cardiology, American Medical Association

Disclosure: Nothing to disclose.


Michael A Portman, MD, MD Professor, Department of Pediatrics, University of Washington School of Medicine; Director of Research, Division of Cardiology, Seattle Children's Hospital; Attending Physician, Seattle Children's Heart Center; Attending Physician, Cardiology Clinic, Providence Everett Medical Center

Michael A Portman, MD, MD is a member of the following medical societies: American Academy of Pediatrics, American College of Cardiology, American Heart Association, American Physiological Society, Society for Pediatric Research

Disclosure: Nothing to disclose.

Specialty Editor Board

Mary L Windle, PharmD Adjunct Associate Professor, University of Nebraska Medical Center College of Pharmacy; Editor-in-Chief, Medscape Drug Reference

Disclosure: Nothing to disclose.

Alvin J Chin, MD Emeritus Professor of Pediatrics, University of Pennsylvania School of Medicine

Alvin J Chin, MD is a member of the following medical societies: American Association for the Advancement of Science, Society for Developmental Biology, American Heart Association

Disclosure: Nothing to disclose.

Chief Editor

P Syamasundar Rao, MD Professor of Pediatrics and Medicine, Division of Cardiology, Emeritus Chief of Pediatric Cardiology, University of Texas Medical School at Houston and Children's Memorial Hermann Hospital

P Syamasundar Rao, MD is a member of the following medical societies: American Academy of Pediatrics, American Pediatric Society, American College of Cardiology, American Heart Association, Society for Cardiovascular Angiography and Interventions, Society for Pediatric Research

Disclosure: Nothing to disclose.

Additional Contributors

Paul M Seib, MD Associate Professor of Pediatrics, University of Arkansas for Medical Sciences; Medical Director, Cardiac Catheterization Laboratory, Co-Medical Director, Cardiovascular Intensive Care Unit, Arkansas Children's Hospital

Paul M Seib, MD is a member of the following medical societies: American Academy of Pediatrics, American College of Cardiology, American Heart Association, Arkansas Medical Society, International Society for Heart and Lung Transplantation, Society for Cardiovascular Angiography and Interventions

Disclosure: Nothing to disclose.

  1. Miller A, Siffel C, Lu C, Riehle-Colarusso T, Frias JL, Correa A. Long-term survival of infants with atrioventricular septal defects. J Pediatr. 2010 Jun. 156(6):994-1000. [Medline].

  2. Briggs LE, Kakarla J, Wessels A. The pathogenesis of atrial and atrioventricular septal defects with special emphasis on the role of the dorsal mesenchymal protrusion. Differentiation. 2012 Jul. 84(1):117-30. [Medline]. [Full Text].

  3. Guo Y, Shen J, Yuan L, Li F, Wang J, Sun K. Novel CRELD1 gene mutations in patients with atrioventricular septal defect. World J Pediatr. 2010 Nov. 6(4):348-52. [Medline].

  4. Robinson SW, Morris CD, Goldmuntz E, Reller MD, Jones MA, Steiner RD, et al. Missense mutations in CRELD1 are associated with cardiac atrioventricular septal defects. Am J Hum Genet. 2003 Apr. 72(4):1047-52. [Medline]. [Full Text].

  5. Green EK, Priestley MD, Waters J, Maliszewska C, Latif F, Maher ER. Detailed mapping of a congenital heart disease gene in chromosome 3p25. J Med Genet. 2000 Aug. 37(8):581-7. [Medline]. [Full Text].

  6. Inga A, Reamon-Buettner SM, Borlak J, Resnick MA. Functional dissection of sequence-specific NKX2-5 DNA binding domain mutations associated with human heart septation defects using a yeast-based system. Hum Mol Genet. 2005 Jul 15. 14(14):1965-75. [Medline].

  7. Moskowitz IP, Wang J, Peterson MA, Pu WT, Mackinnon AC, Oxburgh L, et al. Transcription factor genes Smad4 and Gata4 cooperatively regulate cardiac valve development. [corrected]. Proc Natl Acad Sci U S A. 2011 Mar 8. 108(10):4006-11. [Medline]. [Full Text].

  8. Tomita-Mitchell A, Mahnke DK, Struble CA, Tuffnell ME, Stamm KD, Hidestrand M, et al. Human gene copy number spectra analysis in congenital heart malformations. Physiol Genomics. 2012 May 1. 44(9):518-41. [Medline]. [Full Text].

  9. Kutty S, Smallhorn JF. Evaluation of atrioventricular septal defects by three-dimensional echocardiography: benefits of navigating the third dimension. J Am Soc Echocardiogr. 2012 Sep. 25(9):932-44. [Medline].

  10. Cheng HL, Huang CH, Tsai HE, Chen MY, Fan SZ, Hsiao PN. Intraoperative assessment of partial atrioventricular septal defect with a cleft mitral valve by real-time three-dimensional transesophageal echocardiography. Anesth Analg. 2012 Apr. 114(4):731-4. [Medline].

  11. Prifti E, Bonacchi M, Bernabei M, et al. Repair of complete atrioventricular septal defects in patients weighing less than 5 kg. Ann Thorac Surg. 2004 May. 77(5):1717-26. [Medline].

  12. Jacobs JP, O'Brien SM, Pasquali SK, Jacobs ML, Lacour-Gayet FG, Tchervenkov CI, et al. Variation in outcomes for benchmark operations: an analysis of the Society of Thoracic Surgeons Congenital Heart Surgery Database. Ann Thorac Surg. 2011 Dec. 92(6):2184-91; discussion 2191-2. [Medline]. [Full Text].

  13. Kaza AK, Colan SD, Jaggers J, Lu M, Atz AM, Sleeper LA, et al. Surgical interventions for atrioventricular septal defect subtypes: the pediatric heart network experience. Ann Thorac Surg. 2011 Oct. 92(4):1468-75; discussion 1475. [Medline]. [Full Text].

  14. Minich LL, Atz AM, Colan SD, Sleeper LA, Mital S, Jaggers J, et al. Partial and transitional atrioventricular septal defect outcomes. Ann Thorac Surg. 2010 Feb. 89(2):530-6. [Medline]. [Full Text].

  15. Ten Harkel AD, Cromme-Dijkhuis AH, Heinerman BC, et al. Development of left atrioventricular valve regurgitation after correction of atrioventricular septal defect. Ann Thorac Surg. 2005 Feb. 79(2):607-12. [Medline].

  16. Murashita T, Kubota T, Oba J, Aoki T, Matano J, Yasuda K. Left atrioventricular valve regurgitation after repair of incomplete atrioventricular septal defect. Ann Thorac Surg. 2004 Jun. 77(6):2157-62. [Medline].

  17. Aeba R, Kudo M, Okamoto K, Yozu R. Bridging annuloplasty for left atrioventricular valve of partial atrioventricular septal defect. Ann Thorac Surg. 2012 May. 93(5):e137-9. [Medline].

  18. Manning PB. Partial atrioventricular canal: pitfalls in technique. Semin Thorac Cardiovasc Surg Pediatr Card Surg Annu. 2007. 42-6. [Medline].

  19. Stulak JM, Burkhart HM, Dearani JA, Cetta F, Barnes RD, Connolly HM, et al. Reoperations after repair of partial atrioventricular septal defect: a 45-year single-center experience. Ann Thorac Surg. 2010 May. 89(5):1352-9. [Medline].

  20. Abbruzzese PA, Napoleone A, Bini RM. Late left atrioventricular valve insufficiency after repair of partial atrioventricular septal defects: anatomical and surgical determinants. Ann Thorac Surg. 1990 Jan. 49(1):111-4. [Medline].

  21. Aubert S, Henaine R, Raisky O, et al. Atypical forms of isolated partial atrioventricular septal defect increase the risk of initial valve replacement and reoperation. Eur J Cardiothorac Surg. 2005 Aug. 28(2):223-8. [Medline].

  22. Najm HK, Williams WG, Chuaratanaphong S, Watzka SB, Coles JG, Freedom RM. Primum atrial septal defect in children: early results, risk factors, and freedom from reoperation. Ann Thorac Surg. 1998 Sep. 66(3):829-35. [Medline].

  23. Jacobs JP, Jacobs ML, Mavroudis C, Chai PJ, Tchervenkov CI, Lacour-Gayet FG, et al. Atrioventricular septal defects: lessons learned about patterns of practice and outcomes from the congenital heart surgery database of the society of thoracic surgeons. World J Pediatr Congenit Heart Surg. 2010 Apr. 1(1):68-77. [Medline].

  24. Cooper WO, Hernandez-Diaz S, Arbogast PG, et al. Major congenital malformations after first-trimester exposure to ACE inhibitors. N Engl J Med. 2006 Jun 8. 354(23):2443-51. [Medline].

  25. Allwork SP. Anatomical-embryological correlates in atrioventricular septal defect. Br Heart J. 1982 May. 47(5):419-29. [Medline].

  26. Ebels T, Ho SY, Anderson RH, Meijboom EJ, Eijgelaar A. The surgical anatomy of the left ventricular outflow tract in atrioventricular septal defect. Ann Thorac Surg. 1986 May. 41(5):483-8. [Medline].

  27. Ferencz C, Rubin JD, Loffredo CA, eds. The Epidemiology of Congenital Heart Disease, The Baltimore-Washington Infant Heart Study (1981-1989),. Perspectives in Pediatric Cardiology. Mount Kisco, NY: Futura Publishing Co; 1993. Vol 4:

  28. Freeman SB, Taft LF, Dooley KJ, et al. Population-based study of congenital heart defects in Down syndrome. Am J Med Genet. 1998 Nov 16. 80(3):213-7. [Medline].

  29. Jacobstein MD, Fletcher BD, Goldstein S, Riemenschneider TA. Evaluation of atrioventricular septal defect by magnetic resonance imaging. Am J Cardiol. 1985 Apr 15. 55(9):1158-61. [Medline].

  30. LaCorte MA, Cooper RS, Kauffman SL, et al. Atrioventricular canal ventricular septal defect with cleft mitral valve. Angiographic and echocardiographic features. Pediatr Cardiol. 1982. 2(4):289-95. [Medline].

  31. Lipshultz SE, Sanders SP, Mayer JE, Colan SD, Lock JE. Are routine preoperative cardiac catheterization and angiography necessary before repair of ostium primum atrial septal defect?. J Am Coll Cardiol. 1988 Feb. 11(2):373-8. [Medline].

  32. Neufeld HN, Titus JL, Dushane JW, BUrchell HB, Edwards JE. Isolated ventricular septal defect of the persistent common atrioventricular canal type. Circulation. 1961 May. 23:685-96. [Medline].

  33. Parsons JM, Baker EJ, Anderson RH, et al. Morphological evaluation of atrioventricular septal defects by magnetic resonance imaging. Br Heart J. 1990 Aug. 64(2):138-45. [Medline].

  34. Piccoli GP, Gerlis LM, Wilkinson JL, et al. Morphology and classification of atrioventricular defects. Br Heart J. 1979 Dec. 42(6):621-32. [Medline].

  35. Portman MA, Beder SD, Ankeney JL. A 20-year review of ostium primum defect repair in children. Am Heart J. 1985 Nov. 110(5):1054-8. [Medline].

  36. Portman MA, Beder SD, Cohen MH, et al. Conduction abnormalities detected by electrophysiologic testing following repair of ostium primum atrioventricular septal defect. Int J Cardiol. 1986 Apr. 11(1):111-9. [Medline].

  37. Pretre R, Dave H, Kadner A. Direct closure of the septum primum in atrioventricular canal defects. J Thorac Cardiovasc Surg. 2004 Jun. 127(6):1678-81.

  38. Sadeghi AM, Laks H, Pearl JM. Primum atrial septal defect. Semin Thorac Cardiovasc Surg. 1997 Jan. 9(1):2-7. [Medline].

  39. Singh A, Romp RL, Nanda NC, Rajdev S, Mehmood F, Baysan O, et al. Usefulness of live/real time three-dimensional transthoracic echocardiography in the assessment of atrioventricular septal defects. Echocardiography. 2006 Aug. 23(7):598-608. [Medline].

  40. van den Bosch AE, van Dijk VF, McGhie JS, et al. Real-time transthoracic three-dimensional echocardiography provides additional information of left-sided AV valve morphology after AVSD repair. Int J Cardiol. 2006 Jan 26. 106(3):360-4. [Medline].

  41. Wang ZJ, Reddy GP, Gotway MB, et al. Cardiovascular shunts: MR imaging evaluation. Radiographics. 2003 Oct. 23 Spec No:S181-94. [Medline].

Partial atrioventricular septal defect (AVSD): The mitral and tricuspid annuli are separate. The cleft in the mitral leaflet is in the anterior position. This type of anatomy is usually associated with a primum atrial septal defect (ASD). Partial AVSD is more common than intermediate AVSD.
Intermediate atrioventricular septal defect (AVSD): A single valve annulus is present. The anterior and posterior bridging leaflets are fused (whereas in complete AVSD the anterior and posterior bridging leaflets are not fused). Therefore, the atrioventricular valve has a tricuspid and a mitral component. Intermediate AVSD is the least common type of AVSD.
Echocardiogram of the apical 4-chamber view demonstrating a partial atrioventricular septal defect (AVSD). Chambers are denoted by RA (right atrium), RV (right ventricle), and LV (left ventricle).
Echocardiogram with subcostal view demonstrates an atrioventricular septal defect (AVSD). A portion of the ostium secundum atrial septum is also missing, just superior to the ostium primum defect.
Color Doppler demonstrates left-to-right shunting through the partial atrioventricular septal defect (AVSD) shown in the following images.
Left superior axis deviation in the frontal plane and rR' pattern in right precordial leads.
All material on this website is protected by copyright, Copyright © 1994-2016 by WebMD LLC. This website also contains material copyrighted by 3rd parties.