Close
New

Medscape is available in 5 Language Editions – Choose your Edition here.

 

Double Outlet Right Ventricle With Transposition

  • Author: M Silvana Horenstein, MD; Chief Editor: P Syamasundar Rao, MD  more...
 
Updated: Apr 29, 2014
 

Background

Double outlet right ventricle (DORV), as depicted in the image below, is a type of ventriculoarterial connection in which both the aorta (AO) and pulmonary artery (PA) arise entirely or predominantly from the right ventricle (RV). The only outlet from the left ventricle (LV) is a ventricular septal defect (VSD).

Double outlet right ventricle (DORV) with transpos Double outlet right ventricle (DORV) with transposition of the great arteries accounts for 26% of cases of DORV. The aorta (AO) is anterior and to the right of the pulmonary artery (PA), and both arteries arise from the right ventricle (RV). The only outflow from the left ventricle (LV) is a ventricular septal defect (VSD), which diverts blood toward the RV. Pulmonary veins drain into the left atrium (LA) after blood has been oxygenated in the lungs (L). Systemic venous return is to the right atrium (RA).

DORV is usually associated with concordant atrioventricular (AV) connections (ie, the right atrium drains into the RV and the left atrium drains into the LV). Fibrous discontinuity is present between the mitral and semilunar valves, which is referred to as subpulmonic and subaortic conus.

DORV is virtually always associated with a VSD and, occasionally, with an atrial septal defect. Patients with DORV may also present with varying degrees of left ventricular hypoplasia and mitral valve anomalies such as stenosis or atresia. Straddling of the AV valves across the VSD may be present. The aortic valve may be stenosed, and the aortic arch may show coarctation or even interruption. Anomalies of the coronary arteries (CAs), such as those that occur in patients with dextro-transposition of the great arteries may be present. These include the left circumflex arising from the right main, a single right CA, a single left CA, and inverted origin of the CA.

The AV node and His-Purkinje fibers may be displaced in DORV because of the anatomic characteristics of these hearts.

In DORV, the great arteries may take different relationships as follows:

  • In 64% of cases of DORV, the great arteries lie side by side with the AO to the right of the PA and both semilunar valves lying in the same transverse and coronal plane (physiologically similar to tetralogy of Fallot [TOF]).
  • In 26% of cases of DORV, the AO is anterior and to the right of the PA, physiologically resembling transposition of the great arteries (ie, dextro-transposition of the great arteries), with a VSD.
  • In 7% of cases of DORV, the AO is anterior and to the left of the PA (left-transposition of the great arteries).
  • Only 3% of cases of DORV have a normal great artery relationship with the AO arising posterior and to the right of the PA.
Next

Pathophysiology

The pathophysiology of DORV varies, irrespective of the great arterial relationship (ie, side-by-side, dextro-transposition of the great arteries, left-transposition of the great arteries, normally related). Clinical manifestations may range from that of a large VSD to that of transposition of the great arteries and may mostly depend on the position of the VSD in relation to the great vessels (whether it is subpulmonary or subaortic) and the presence or absence of pulmonary valve stenosis (PS). Both of these factors contribute substantially to the hemodynamics of this congenital heart defect.

In cases of a subaortic VSD, which occurs in 60-70% of patients, the VSD is closer to the aortic valve, thus oxygenated blood from the LV is directed to the AO and desaturated blood from the right atrium (RA) is directed primarily to the PA (see the image below).

Double outlet right ventricle (DORV) with transpos Double outlet right ventricle (DORV) with transposition of the great arteries accounts for 26% of cases of DORV. The aorta (AO) is anterior and to the right of the pulmonary artery (PA), and both arteries arise from the right ventricle (RV). The only outflow from the left ventricle (LV) is a ventricular septal defect (VSD), which diverts blood toward the RV. Pulmonary veins drain into the left atrium (LA) after blood has been oxygenated in the lungs (L). Systemic venous return is to the right atrium (RA).

PS occurs commonly and directs some desaturated blood into the AO. Because of the large VSD, the RV and the LV as well as the AO handle equal systolic pressures. When PS is present, this poses a restriction to flow to the pulmonary circuit, and thus, systolic pressure in the pulmonary arteries is lower. This physiology resembles that of TOF with cyanosis and no congestive heart failure (CHF).

In cases of a subaortic VSD with no PS, systolic pressure in both great vessels as well as in both ventricles is equal; thus, blood follows the path of least resistance (ie, usually towards the lungs) and the clinical picture is that of a large VSD. The degree of blood oxygenation in the systemic as well as the pulmonary circuits is determined by degree of mixing in the systemic (ie, right) ventricle, which, in turn, depends on the degree of resistance upstream of the pulmonary valve.

All patients with elevated pulmonary blood flow (PBF) at systemic or near systemic pressures are at increased risk of developing early pulmonary obstructive vascular disease regardless of their arterial oxygen saturation (ie, presence or absence of cyanosis).

With a subpulmonary VSD (Taussig-Bing anomaly), which occurs in 10% of patients, oxygenated blood from the LV is directed to the PA and desaturated blood from the RA is directed to the AO. This physiology resembles transposition of the great arteries with a VSD; thus, the patient presents with cyanosis and CHF.

In cases of a doubly committed VSD, the left ventricular outflow is not committed preferentially to either semilunar valve. In the presence of PS, the physiology resembles that of TOF, and in the absence of PS, it is that of a large VSD.

In remote VSD, the VSD is far from both semilunar valves. It is most commonly an AV canal-type VSD. Again, the physiology is that of TOF in cases involving PS and is that of a large VSD when flow through the pulmonary valve is not restricted (ie, absence of PS).

Previous
Next

Epidemiology

Frequency

United States

Congenital heart disease (CHD) occurs in less than 1% of all newborns, and DORV is present in 0.5-1.5% of all patients with CHD. The estimated frequency of DORV is 1 case per 10,000 live births. A recent study showed a higher prevalence of DORV, tetralogy of Fallot, and truncus arteriosus, in addition to endocardial cushion defects and single ventricle, in certain regions of the country.[1]

Mortality/Morbidity

Mortality and morbidity depend not only on the overall clinical condition of the patient but also on the type and severity of associated anomalies.

Irrespective of the great vessel relationship, the mortality rate is less than 5% for simple subaortic VSD and is somewhat higher for a doubly committed VSD.

In cases of subpulmonary VSD (Taussig-Bing anomaly), morbidity and mortality depend on whether the patient has already developed pulmonary vascular obstructive disease and also on the type of surgery that is required.[2] In cases of DORV with dextro-transposition of the great arteries, creation of an intraventricular tunnel between the VSD and the AO carries a mortality risk of 10-15%. In subpulmonary VSD with PS (ie, TOF-type physiology), an intraventricular tunnel between the VSD and the AO in addition to relief of PS by a patch graft also carries a mortality risk of 10-15%. In cases of remote VSD, the preferred surgical repair is creation of an interventricular tunnel between the VSD and the AO. However, it carries a mortality rate as high as 30-40%.

When the above surgical procedures cannot be performed (ie, hypoplastic LV, inadequate anatomy for an intracardiac conduit between the LV and the AO, hypoplastic AO, hypoplastic mitral valve), a Fontan-type operation is the choice; the mortality rate has decreased to approximately 5%.

Sex

No sex predilection is reported.

Age

Newborns usually present with this entity; however, in some circumstances (eg, subaortic VSD with mild-to-moderate PS), the diagnosis may not be made until later in infancy.

Previous
 
 
Contributor Information and Disclosures
Author

M Silvana Horenstein, MD Assistant Professor, Department of Pediatrics, University of Texas Medical School at Houston; Medical Doctor Consultant, Legacy Department, Best Doctors, Inc

M Silvana Horenstein, MD is a member of the following medical societies: American Academy of Pediatrics, American College of Cardiology, American Medical Association

Disclosure: Nothing to disclose.

Specialty Editor Board

Mary L Windle, PharmD Adjunct Associate Professor, University of Nebraska Medical Center College of Pharmacy; Editor-in-Chief, Medscape Drug Reference

Disclosure: Nothing to disclose.

Julian M Stewart, MD, PhD Associate Chairman of Pediatrics, Director, Center for Hypotension, Westchester Medical Center; Professor of Pediatrics and Physiology, New York Medical College

Julian M Stewart, MD, PhD is a member of the following medical societies: American Academy of Pediatrics, American Autonomic Society, American Physiological Society

Disclosure: Received grant/research funds from Lundbeck Pharmaceuticals for none.

Chief Editor

P Syamasundar Rao, MD Professor of Pediatrics and Medicine, Division of Cardiology, Emeritus Chief of Pediatric Cardiology, University of Texas Medical School at Houston and Children's Memorial Hermann Hospital

P Syamasundar Rao, MD is a member of the following medical societies: American Academy of Pediatrics, American Pediatric Society, American College of Cardiology, American Heart Association, Society for Cardiovascular Angiography and Interventions, Society for Pediatric Research

Disclosure: Nothing to disclose.

Additional Contributors

Juan Carlos Alejos, MD Clinical Professor, Department of Pediatrics, Division of Cardiology, University of California, Los Angeles, David Geffen School of Medicine

Juan Carlos Alejos, MD is a member of the following medical societies: American Academy of Pediatrics, American College of Cardiology, American Heart Association, American Medical Association, International Society for Heart and Lung Transplantation

Disclosure: Received honoraria from Actelion for speaking and teaching.

Acknowledgements

Michael L Epstein, MD Director, Division of Pediatric Cardiology, Department of Pediatrics, Children's Hospital of Michigan; Professor, Wayne State University School of Medicine

Michael L Epstein, MD is a member of the following medical societies: American Academy of Pediatrics, American College of Cardiology, and American Heart Association

Disclosure: Nothing to disclose.

References
  1. Shuler CO, Black GB, Jerrell JM. Population-based treated prevalence of congenital heart disease in a pediatric cohort. Pediatr Cardiol. 2013 Mar. 34(3):606-11. [Medline].

  2. Soszyn N, Fricke TA, Wheaton GR, Ramsay JM, d'Udekem Y, Brizard CP, et al. Outcomes of the arterial switch operation in patients with Taussig-Bing anomaly. Ann Thorac Surg. 2011 Aug. 92(2):673-9. [Medline].

  3. Derbent M, Yilmaz Z, Baltaci V, et al. Chromosome 22q11.2 deletion and phenotypic features in 30 patients with conotruncal heart defects. Am J Med Genet A. 2003 Jan 15. 116(2):129-35. [Medline].

  4. Goldmuntz E, Clark BJ, Mitchell LE, et al. Frequency of 22q11 deletions in patients with conotruncal defects. J Am Coll Cardiol. 1998 Aug. 32(2):492-8. [Medline].

  5. Sergi C, Serpi M, Muller-Navia J, et al. CATCH 22 syndrome: report of 7 infants with follow-up data and review of the recent advancements in the genetic knowledge of the locus 22q11. Pathologica. 1999 Jun. 91(3):166-72. [Medline].

  6. Siman CM, Gittenberger-De Groot AC, Wisse B, Eriksson UJ. Malformations in offspring of diabetic rats: morphometric analysis of neural crest-derived organs and effects of maternal vitamin E treatment. Teratology. 2000 May. 61(5):355-67. [Medline].

  7. Moazzen H, Lu X, Ma NL, Velenosi TJ, Urquhart BL, Wisse LJ, et al. N-Acetylcysteine prevents congenital heart defects induced by pregestational diabetes. Cardiovasc Diabetol. 2014 Feb 18. 13(1):46. [Medline]. [Full Text].

  8. French VM, van de Laar IM, Wessels MW, Rohe C, Roos-Hesselink JW, Wang G, et al. NPHP4 variants are associated with pleiotropic heart malformations. Circ Res. 2012 Jun 8. 110(12):1564-74. [Medline].

  9. Obler D, Juraszek A, Smoot LB, Natowicz MR. Double Outlet Right Ventricle: Aetiologies and Associations. J Med Genet. 2008 May 2. [Medline].

  10. Kim N, Friedberg MK, Silverman NH. Diagnosis and prognosis of fetuses with double outlet right ventricle. Prenat Diagn. 2006 Aug. 26(8):740-5. [Medline].

  11. Gelehrter S, Owens ST, Russell MW, van der Velde ME, Gomez-Fifer C. Accuracy of the fetal echocardiogram in double-outlet right ventricle. Congenit Heart Dis. 2007 Jan. 2(1):32-7. [Medline].

  12. Tometzki AJ, Suda K, Kohl T, et al. Accuracy of prenatal echocardiographic diagnosis and prognosis of fetuses with conotruncal anomalies. J Am Coll Cardiol. 1999 May. 33(6):1696-701. [Medline].

  13. Chen GZ, Huang GY, Liang XC, et al. Methodological study on real-time three-dimensional echo-cardiography and its application in the diagnosis of complex congenital heart disease. Chin Med J (Engl). 2006 Jul 20. 119(14):1190-4. [Medline].

  14. Yu FF, Lu B, Gao Y, Hou ZH, Schoepf UJ, Spearman JV, et al. Congenital anomalies of coronary arteries in complex congenital heart disease: diagnosis and analysis with dual-source CT. J Cardiovasc Comput Tomogr. 2013 Nov-Dec. 7(6):383-90. [Medline].

  15. Raisky O, Vouhé PR. Pitfalls in repair of conotruncal anomalies. Semin Thorac Cardiovasc Surg Pediatr Card Surg Annu. 2013. 16(1):7-12. [Medline].

  16. Stoica S, Carpenter E, Campbell D, Mitchell M, da Cruz E, Ivy D, et al. Morbidity of the arterial switch operation. Ann Thorac Surg. 2012 Jun. 93(6):1977-83. [Medline]. [Full Text].

  17. Devine WA, Webber SA, Anderson RH. Congenitally malformed hearts from a population of children undergoing cardiac transplantation: comments on sequential segmental analysis and dissection. Pediatr Dev Pathol. 2000 Mar-Apr. 3(2):140-54. [Medline].

  18. Bajolle F, Zaffran S, Kelly RG, et al. Rotation of the myocardial wall of the outflow tract is implicated in the normal positioning of the great arteries. Circ Res. 2006 Feb 17. 98(3):421-8. [Medline].

  19. Baschat AA, Gembruch U, Knopfle G, Hansmann M. First-trimester fetal heart block: a marker for cardiac anomaly. Ultrasound Obstet Gynecol. 1999 Nov. 14(5):311-4. [Medline].

  20. Beekmana RP, Roest AA, Helbing WA, et al. Spin echo MRI in the evaluation of hearts with a double outlet right ventricle: usefulness and limitations. Magn Reson Imaging. 2000 Apr. 18(3):245-53. [Medline].

  21. Benito Bartolome F, Sanchez Fernandez-Bernal C, Torres Feced V. [Catheter ablation of accessory pathways in patients with congenital cardiopathies]. Rev Esp Cardiol. 1999 Nov. 52(11):1028-31. [Medline].

  22. Black MD, Shukla V, Freedom RM. Direct neonatal ventriculo-arterial connections (REV): early results and future implications. Ann Thorac Surg. 1999 Apr. 67(4):1137-41. [Medline].

  23. Blume ED, Altmann K, Mayer JE, et al. Evolution of risk factors influencing early mortality of the arterial switch operation. J Am Coll Cardiol. 1999 May. 33(6):1702-9. [Medline].

  24. Bosi G, Scorrano M, Tosato G, et al. The Italian Multicentric Study on Epidemiology of Congenital Heart Disease: first step of the analysis. Working Party of the Italian Society of Pediatric Cardiology. Cardiol Young. 1999 May. 9(3):291-9. [Medline].

  25. Breymann T, Boethig D, Goerg R, Thies WR. The Contegra bovine valved jugular vein conduit for pediatric RVOT reconstruction: 4 years experience with 108 patients. J Card Surg. 2004 Sep-Oct. 19(5):426-31. [Medline].

  26. Casaldaliga J, Girona JM, Sanchez C, et al. [Doppler echocardiography in the postoperative assessment of the arterial switch in the repair of transposition of the great arteries and double outlet right ventricle]. Rev Esp Cardiol. 1996 Feb. 49(2):117-23. [Medline].

  27. Casta AR, Jonas RA, Mayer JE. Double-Outlet Right Ventricle. Cardiac Surgery of the Neonate and Infant. Philadelphia, PA: WB Saunders Co; 1994. 445-59.

  28. Chaoui R, Korner H, Bommer C, et al. [Prenatal diagnosis of heart defects and associated chromosomal aberrations]. Ultraschall Med. 1999 Oct. 20(5):177-84. [Medline].

  29. Dearani JA, Danielson GK, Puga FJ, et al. Late follow-up of 1095 patients undergoing operation for complex congenital heart disease utilizing pulmonary ventricle to pulmonary artery conduits. Ann Thorac Surg. 2003 Feb. 75(2):399-410; discussion 410-1. [Medline].

  30. Digilio MC, Marino B, Ammirati A, et al. Cardiac malformations in patients with oral-facial-skeletal syndromes: clinical similarities with heterotaxia. Am J Med Genet. 1999 Jun 4. 84(4):350-6. [Medline].

  31. Donnelly LF, Higgins CB. MR imaging of conotruncal abnormalities. AJR Am J Roentgenol. 1996 Apr. 166(4):925-8. [Medline].

  32. Franco D, Campione M. The role of Pitx2 during cardiac development. Linking left-right signaling and congenital heart diseases. Trends Cardiovasc Med. 2003 May. 13(4):157-63. [Medline].

  33. Gober V, Berdat P, Pavlovic M, et al. Adverse mid-term outcome following RVOT reconstruction using the Contegra valved bovine jugular vein. Ann Thorac Surg. 2005 Feb. 79(2):625-31. [Medline].

  34. Gonçalves LF, Nien JK, Espinoza J, Kusanovic JP, Lee W, Swope B, et al. What does 2-dimensional imaging add to 3- and 4-dimensional obstetric ultrasonography?. J Ultrasound Med. 2006 Jun. 25(6):691-9. [Medline]. [Full Text].

  35. Gucer S, Ince T, Kale G, et al. Noncardiac malformations in congenital heart disease: a retrospective analysis of 305 pediatric autopsies. Turk J Pediatr. 2005 Apr-Jun. 47(2):159-66. [Medline].

  36. Haas F, Wottke M, Poppert H, Meisner H. Long-term survival and functional follow-up in patients after the arterial switch operation. Ann Thorac Surg. 1999 Nov. 68(5):1692-7. [Medline].

  37. Hagler DJ. Double-Outlet Right Ventricle. Heart Disease in Infants, Children, and Adolescents: Including the Fetus and Young Adult. Baltimore, MD: Williams and Wilkins; 1995. Vol 2: 1246-70.

  38. Kleinert S, Sano T, Weintraub RG, et al. Anatomic features and surgical strategies in double-outlet right ventricle. Circulation. 1997 Aug 19. 96(4):1233-9. [Medline].

  39. Lee Y, Song AJ, Baker R, et al. Jumonji, a nuclear protein that is necessary for normal heart development. Circ Res. 2000 May 12. 86(9):932-8. [Medline]. [Full Text].

  40. Napoleone RM, Varela M, Andersson HC. Complex congenital heart malformations in mosaic tetrasomy 8p: case report and review of the literature. Am J Med Genet. 1997 Dec 19. 73(3):330-3. [Medline].

  41. Niezen RA, Beekman RP, Helbing WA, et al. Double outlet right ventricle assessed with magnetic resonance imaging. Int J Card Imaging. 1999 Aug. 15(4):323-9. [Medline].

  42. Ohuchi H, Hiraumi Y, Tasato H, et al. Comparison of the right and left ventricle as a systemic ventricle during exercise in patients with congenital heart disease. Am Heart J. 1999 Jun. 137(6):1185-94. [Medline].

  43. Pretre R, Ye Q, Fasnacht M, et al. Recent experience with the arterial switch operation in transposition of the great arteries. Schweiz Med Wochenschr. 1999 Oct 9. 129(40):1443-9. [Medline].

  44. Reddy VM, Hanley FL. Cardiac surgery in infants with very low birth weight. Semin Pediatr Surg. 2000 May. 9(2):91-5. [Medline].

  45. Scalzo G, Cavallaro A, Pulvirenti A, et al. [Physiopathologic findings and surgical treatment in transposition of great vessels: our experience]. Pediatr Med Chir. 1998 Nov-Dec. 20(6):377-80. [Medline].

  46. Serraf A, Nakamura T, Lacour-Gayet F, et al. Surgical approaches for double-outlet right ventricle or transposition of the great arteries associated with straddling atrioventricular valves. J Thorac Cardiovasc Surg. 1996 Mar. 111(3):527-35. [Medline].

  47. Silka MJ. Double-Outlet Ventricles. The Science and Practice of Pediatric Cardiology. Baltimore, MD: Williams & Wilkins; 1997. Vol 2: 1505-23.

  48. Sivanandam S, Glickstein JS, Printz BF, et al. Prenatal diagnosis of conotruncal malformations: diagnostic accuracy, outcome, chromosomal abnormalities, and extracardiac anomalies. Am J Perinatol. 2006 May. 23(4):241-5. [Medline].

  49. Smith RS, Comstock CH, Kirk JS, et al. Double-outlet right ventricle: an antenatal diagnostic dilemma. Ultrasound Obstet Gynecol. 1999 Nov. 14(5):315-9. [Medline].

  50. Snider AR. Abnormalities of Ventriculoarterial Connection. Echocardiography in Pediatric Heart Disease. St. Louis, Mo: Mosby-Year Book; 1997. 323-42.

  51. Sorensen TS, Korperich H, Greil GF, et al. Operator-independent isotropic three-dimensional magnetic resonance imaging for morphology in congenital heart disease: a validation study. Circulation. 2004 Jul 13. 110(2):163-9. [Medline]. [Full Text].

  52. Tanner K, Sabrine N, Wren C. Cardiovascular malformations among preterm infants. Pediatrics. 2005 Dec. 116(6):e833-8. [Medline].

  53. Tchervenkov CI, Tahta SA, Cecere R, Beland MJ. Single-stage arterial switch with aortic arch enlargement for transposition complexes with aortic arch obstruction. Ann Thorac Surg. 1997 Dec. 64(6):1776-81. [Medline].

  54. Walters HL 3rd, Mavroudis C, Tchervenkov CI, et al. Congenital Heart Surgery Nomenclature and Database Project: double outlet right ventricle. Ann Thorac Surg. 2000 Apr. 69(4 Suppl):S249-63. [Medline].

  55. Walters HL, Pacifico AD. Double Outlet Ventricles. Mavroudis C, Backer CL, eds. Pediatric Cardiac Surgery. 3rd ed. Stamford, CT: Appleton & Lange; 1994. 305-38.

  56. Yoo SJ, Kim YM, Choe YH. Magnetic resonance imaging of complex congenital heart disease. Int J Card Imaging. 1999 Apr. 15(2):151-60. [Medline].

 
Previous
Next
 
Double outlet right ventricle (DORV) with transposition of the great arteries accounts for 26% of cases of DORV. The aorta (AO) is anterior and to the right of the pulmonary artery (PA), and both arteries arise from the right ventricle (RV). The only outflow from the left ventricle (LV) is a ventricular septal defect (VSD), which diverts blood toward the RV. Pulmonary veins drain into the left atrium (LA) after blood has been oxygenated in the lungs (L). Systemic venous return is to the right atrium (RA).
This is an angiogram obtained during catheterization of a patient with double outlet right ventricle (DORV) with transposition of the great arteries. Injection of contrast though the catheter (arrow) into the left ventricle (LV) shows that blood is directed toward the right ventricle (RV) through a remote or doubly committed ventricular septal defect (VSD). The aorta (AO) is anterior to the pulmonary artery (PA) and both clearly arise from the RV.
This is an angiogram obtained during catheterization of a patient with double outlet right ventricle (DORV) with transposition of the great arteries (see Media file 2). Blood fills the aorta (AO) and pulmonary artery (PA) almost simultaneously, which is another indicator of a remote or doubly committed ventricular septal defect (VSD) (curved arrow). LV indicates the left ventricle, RV indicates the right ventricle, and the small arrow to the left indicates the catheter.
 
 
 
All material on this website is protected by copyright, Copyright © 1994-2016 by WebMD LLC. This website also contains material copyrighted by 3rd parties.