Close
New

Medscape is available in 5 Language Editions – Choose your Edition here.

 

Muscular Ventricular Septal Defect Workup

  • Author: Michael D Taylor, MD, PhD; Chief Editor: Stuart Berger, MD  more...
 
Updated: Jan 04, 2016
 

Approach Considerations

For children with small ventricular septal defects (VSDs), no specific laboratory blood tests are indicated. Occasionally, in the evaluation of children with a large, symptomatic VSD, brain natriuretic peptide (BNP) is measured as a marker of CHF severity. Electrolytes should be periodically measured in children who are maintained on diuretics and angiotensin-converting enzyme (ACE) inhibitors.

Electrocardiographic findings vary depending on the VSD size and the degree of intracardiac shunting. Patients with small VSDs have normal ECG findings.

Large VSDs show left ventricular hypertrophy (LVH) (ie, volume overload), right ventricular hypertrophy (RVH) (ie, pressure overload), and left atrial enlargement.

Histologic findings

No specific histologic abnormality is present. However, lung biopsy findings are sometimes used to stage degrees of pulmonary vascular obstructive disease.

Next

Imaging Studies

Chest radiography

Small ventricular septal defects (VSDs) show normal cardiac size and normal pulmonary vascularity. Large VSDs demonstrate cardiac enlargement and increased pulmonary vascular markings proportional to the size of the left-to-right shunt, left atrial and left ventricular enlargement, the posterior displacement of the left ventricular apex, and the prominence of the main pulmonary artery segment.

Two-dimensional echocardiography and Doppler

Two-dimensional (2D) echocardiography with Doppler color flow mapping is the most reliable noninvasive modality to identify the presence, size, number, and location of VSDs. Muscular VSD is readily identified from the apical, 4-chamber, parasternal long-axis and parasternal short-axis scan planes.

Small VSDs are usually isolated defects with otherwise normal cardiac anatomy and function. Large VSDs typically have left atrial and left ventricular dilation, with normal left ventricular systolic and diastolic function. Dilation of the main and branch pulmonary arteries is also common.

Echocardiography is also useful in determining the presence of associated intracardiac findings including right ventricular muscle bundles, infundibular stenosis, pulmonary valve stenosis, and associated left-sided lesions (eg, subaortic membrane, aortic stenosis, aortic cusp prolapse, coarctation of the aorta).

Doppler echocardiography can be used to predict the intracardiac pressure gradient from the left ventricle to the right ventricle using the continuous wave Doppler tracing (modified Bernoulli equation = 4 [velocity squared] and subtracting the calculated gradient from the aortic systolic blood pressure [in the absence of aortic stenosis]).[9]

Color Doppler ultrasonography is useful in determining VSD location and size as well as the degree of intracardiac shunting.

These tests are also essential to rule out other commonly associated congenital heart lesions including atrial septal defects, patent ductus arteriosus, pulmonary valve stenosis, and complex congenital heart disease with associated VSD.

Three-dimensional echocardiography

Real-time 3-dimensional echocardiography (RT3DE) can be applied to the characterization of the ventricular septum. RT3DE allows accurate determination of VSD size, shape, and location. The short acquisition time and acceptable reconstruction time make this technique clinically applicable.

RT3DE is especially helpful in the characterization of multiple muscular VSDs (Swiss cheese VSD). It allows for more precise interventional and surgical planning for this very challenging anatomy.[10]

Magnetic resonance imaging

Cardiac magnetic resonance imaging (MRI) is a useful adjunct in the evaluation of large muscular VSDs. Black blood imaging at end-diastole reliably shows the anatomy of the ventricular septum, ventricular chambers, and great vessels. Bright blood gradient-echo dynamic images are useful for evaluating the anatomy in all segments of the cardiac cycle. Tiny muscular VSDs are not well seen using cardiac MRI.

Flow-sensitive phase contrast imaging is the criterion standard for determining the direction and magnitude of shunting. It can alleviate the requirement for cardiac catheterization in some cases.

Previous
Next

Diagnostic Cardiac Catheterization and Angiography

Catheterization

Routine diagnostic cardiac catheterization is no longer required for muscular ventricular septal defects (VSDs). However, it is indicated in some situations, such as inadequate noninvasive assessment of the size, number, or location of VSDs by echocardiography.

Other indications include a requirement to determine additional hemodynamic data prior to medical management or surgical repair (eg, determination of PVR and its reactivity, quantitation of left-to-right shunting, exclusion of associated congenital heart defects).

Older children and adults with a large, unoperated VSD usually require cardiac catheterization prior to surgical closure to assess PVR.

Angiography

Muscular VSDs are best demonstrated in the long axial oblique orientation; anterior muscular defects are best demonstrated in right anterior oblique angulation, while posterior muscular defects are best visualized in the hepatoclavicular view. Angiography can be a useful adjunct to identify multiple defects in the muscular septum.

Previous
 
 
Contributor Information and Disclosures
Author

Michael D Taylor, MD, PhD Director, Advanced Imaging Innovation, Cincinnati Children's Hospital Medical Center; Assistant Professor, Department of Pediatrics, University of Cincinnati College of Medicine

Michael D Taylor, MD, PhD is a member of the following medical societies: American College of Cardiology, American Heart Association, Society for Cardiovascular Magnetic Resonance

Disclosure: Nothing to disclose.

Coauthor(s)

Benjamin W Eidem, MD, FACC, FASE Professor of Pediatrics and Medicine, Departments of Pediatrics and Medicine, Divisions of Pediatric Cardiology and Cardiovascular Diseases, Mayo Medical School

Benjamin W Eidem, MD, FACC, FASE is a member of the following medical societies: Alpha Omega Alpha, American Academy of Pediatrics, American College of Cardiology, American Heart Association, American Society of Echocardiography, Society for Pediatric Research, Society of Pediatric Echocardiography

Disclosure: Nothing to disclose.

Chief Editor

Stuart Berger, MD Medical Director of The Heart Center, Children's Hospital of Wisconsin; Associate Professor, Department of Pediatrics, Section of Pediatric Cardiology, Medical College of Wisconsin

Stuart Berger, MD is a member of the following medical societies: American Academy of Pediatrics, American College of Cardiology, American College of Chest Physicians, American Heart Association, Society for Cardiovascular Angiography and Interventions

Disclosure: Nothing to disclose.

Acknowledgements

Juan Carlos Alejos, MD Clinical Professor, Department of Pediatrics, Division of Cardiology, University of California, Los Angeles, David Geffen School of Medicine

Juan Carlos Alejos, MD is a member of the following medical societies: American Academy of Pediatrics, American College of Cardiology, American Heart Association, American Medical Association, and International Society for Heart and Lung Transplantation

Disclosure: Actelion Honoraria Speaking and teaching

Hugh D Allen, MD Professor, Department of Pediatrics, Division of Pediatric Cardiology and Department of Internal Medicine, Ohio State University College of Medicine

Hugh D Allen, MD is a member of the following medical societies: American Academy of Pediatrics, American College of Cardiology, American Heart Association, American Pediatric Society, American Society of Echocardiography, Society for Pediatric Research, Society of Pediatric Echocardiography, and Western Society for Pediatric Research

Disclosure: Nothing to disclose.

Mary L Windle, PharmD Adjunct Associate Professor, University of Nebraska Medical Center College of Pharmacy; Editor-in-Chief, Medscape Drug Reference

Disclosure: Nothing to disclose.

References
  1. Ramaciotti C, Vetter JM, Bornemeier RA, Chin AJ. Prevalence, relation to spontaneous closure, and association of muscular ventricular septal defects with other cardiac defects. Am J Cardiol. 1995 Jan 1. 75(1):61-5. [Medline].

  2. Newman TB. Etiology of ventricular septal defects: an epidemiologic approach. Pediatrics. 1985 Nov. 76(5):741-9. [Medline].

  3. Nicolae MI, Summers KM, Radford DJ. Familial muscular ventricular septal defects and aneurysms of the muscular interventricular septum. Cardiol Young. 2007 Oct. 17(5):523-7. [Medline].

  4. Williams LJ, Correa A, Rasmussen S. Maternal lifestyle factors and risk for ventricular septal defects. Birth Defects Res A Clin Mol Teratol. 2004 Feb. 70(2):59-64. [Medline].

  5. Oberlander TF, Warburton W, Misri S, Riggs W, Aghajanian J, Hertzman C. Major congenital malformations following prenatal exposure to serotonin reuptake inhibitors and benzodiazepines using population-based health data. Birth Defects Res B Dev Reprod Toxicol. 2008 Feb. 83(1):68-76. [Medline].

  6. Reller MD, Strickland MJ, Riehle-Colarusso T, Mahle WT, Correa A. Prevalence of Congenital Heart Defects in Metropolitan Atlanta, 1998-2005. J Pediatr. 2008 Jul 25. [Medline].

  7. Kapoor R, Gupta S. Prevalence of congenital heart disease, Kanpur, India. Indian Pediatr. 2008 Apr. 45(4):309-11. [Medline].

  8. Axt-Fliedner R, Schwarze A, Smrcek J, et al. Isolated ventricular septal defects detected by color Doppler imaging: evolution during fetal and first year of postnatal life. Ultrasound Obstet Gynecol. 2006 Mar. 27(3):266-73. [Medline].

  9. Bahtiyar MO, Dulay AT, Weeks BP, Friedman AH, Copel JA. Prenatal course of isolated muscular ventricular septal defects diagnosed only by color Doppler sonography: single-institution experience. J Ultrasound Med. 2008 May. 27(5):715-20. [Medline].

  10. van den Bosch AE, Ten Harkel DJ, McGhie JS, et al. Feasibility and accuracy of real-time 3-dimensional echocardiographic assessment of ventricular septal defects. J Am Soc Echocardiogr. 2006 Jan. 19(1):7-13. [Medline].

  11. Alsoufi B, Karamlou T, Osaki M, et al. Surgical repair of multiple muscular ventricular septal defects: the role of re-endocardialization strategy. J Thorac Cardiovasc Surg. 2006 Nov. 132(5):1072-80. [Medline].

  12. Kadner A, Dave H, Dodge-Khatami A, et al. Inferior partial sternotomy for surgical closure of isolated ventricular septal defects in children. Heart Surg Forum. 2004. 7(5):E467-70. [Medline].

  13. Amin Z, Cao QL, Hijazi ZM. Closure of muscular ventricular septal defects: Transcatheter and hybrid techniques. Catheter Cardiovasc Interv. 2008 Jul 1. 72(1):102-11. [Medline].

  14. Aleem IS, Karamlou T, Benson LN, McCrindle BW. Transcatheter device versus surgical closure of ventricular septal defects: a clinical decision analysis. Catheter Cardiovasc Interv. 2006 Apr. 67(4):630-6. [Medline].

  15. Crossland DS, Wilkinson JL, Cochrane AD, d'Udekem Y, Brizard CP, Lane GK. Initial results of primary device closure of large muscular ventricular septal defects in early infancy using periventricular access. Catheter Cardiovasc Interv. 2008 Sep 1. 72(3):386-91. [Medline].

  16. Szkutnik M, Kusa J, Bialkowski J. Percutaneous closure of post-traumatic and congenital muscular ventricular septal defects with the Amplatzer Muscular VSD Occluder. Kardiol Pol. 2008 Jul. 66(7):715-20; discussion 721. [Medline].

  17. Vasilyev NV, Melnychenko I, Kitahori K, et al. Beating-heart patch closure of muscular ventricular septal defects under real-time three-dimensional echocardiographic guidance: a preclinical study. J Thorac Cardiovasc Surg. 2008 Mar. 135(3):603-9. [Medline].

  18. Holzer R, Balzer D, Cao QL, Lock K, Hijazi ZM. Device closure of muscular ventricular septal defects using the Amplatzer muscular ventricular septal defect occluder: immediate and mid-term results of a U.S. registry. J Am Coll Cardiol. 2004 Apr 7. 43(7):1257-63. [Medline].

  19. Kang SL, Tometzki A, Caputo M, Morgan G, Parry A, Martin R. Longer-term outcome of perventricular device closure of muscular ventricular septal defects in children. Catheter Cardiovasc Interv. 2015 May. 85 (6):998-1005. [Medline].

  20. Crossland DS, Wilkinson JL, Cochrane AD, d'Udekem Y, Brizard CP, Lane GK. Initial results of primary device closure of large muscular ventricular septal defects in early infancy using periventricular access. Catheter Cardiovasc Interv. 2008 Sep 1. 72(3):386-91. [Medline].

  21. Kim SJ, Huh J, Song JY, Yang JH, Jun TG, Kang IS. The hybrid perventricular closure of apical muscular ventricular septal defect with Amplatzer duct occluder. Korean J Pediatr. 2013 Apr. 56(4):176-81. [Medline]. [Full Text].

  22. Haponiuk I, Chojnicki M, Jaworski R, Steffek M, Juscinski J, Sroka M, et al. Hybrid approach for closure of muscular ventricular septal defects. Med Sci Monit. 2013 Jul 29. 19:618-24. [Medline]. [Full Text].

  23. Wilson W, Taubert KA, Gewitz M, et al. Prevention of infective endocarditis: guidelines from the American Heart Association: a guideline from the American Heart Association Rheumatic Fever, Endocarditis, and Kawasaki Disease Committee, Council on Cardiovascular Disease in the Young, and the Council on Clinical Cardiology, Council on Cardiovascular Surgery and Anesthesia, and the Quality of Care and Outcomes Research Interdisciplinary Working Group. Circulation. 2007 Oct 9. 116(15):1736-54. [Medline].

 
Previous
Next
 
 
 
 
All material on this website is protected by copyright, Copyright © 1994-2016 by WebMD LLC. This website also contains material copyrighted by 3rd parties.