Close
New

Medscape is available in 5 Language Editions – Choose your Edition here.

 

Supracristal Ventricular Septal Defect Treatment & Management

  • Author: Ira H Gessner, MD; Chief Editor: Howard S Weber, MD, FSCAI  more...
 
Updated: Aug 31, 2015
 

Approach Considerations

Once the diagnosis of supracristal ventricular septal defect (VSD) has been made, there should be careful followup for the development of aortic valve insufficiency. This necessitates not only periodic physical examination with auscultation but also serial echocardiograms, because these diagnostic studies are more sensitive than auscultation in detecting aortic valve regurgitation.

Because spontaneous closure is uncommon in supracristal VSDs and aortic valve insufficiency is common and surgical closure is recommended in most cases. Aortic valve insufficiency in supracristal VSD is usually progressive and warrants an aggressive approach with early intervention to avoid aortic valve deformity and replacement.

Aortic valve insufficiency caused by supracristal VSD must be differentiated from that caused by an abnormal aortic valve (usually a bicuspid valve). Surgical intervention is usually delayed in the latter disorder, because the abnormal aortic valve typically requires replacement rather than repair in cases of aortic valve insufficiency.

Next

Surgical Treatment

Because of the orientation of the right ventricular outflow tract, a surgical approach from the right atrium may not allow adequate visualization of the ventricular septal defect (VSD).[19, 20] Incision into the main pulmonary artery, which exposes the defect through the pulmonic valve, has proved successful.

Repair may be achieved with patch or suture closure, depending on the size of the defect. Aortic valvuloplasty is often, but not always, necessary, and incision through the aortic root can allow adequate visualization for valve repair (Trusler technique). The approach through the main pulmonary artery avoids the need for incision into the right ventricle. Care should be taken to avoid capturing the aortic cusp into one of the patch sutures.[21, 22]

Intraoperative transesophageal echocardiographic monitoring before and after cardiopulmonary bypass can be extremely helpful in precisely defining aortic valve prolapse and the severity of valve insufficiency, which determine the necessity of valvuloplasty[23] .

More extensive damage to the aortic valve from long-standing prolapse and distortion may require valve replacement.

Follow-up care after supracristal ventricular septal defect (VSD) repair and aortic valvuloplasty is essential to ensure that the aortic insufficiency has been corrected completely.

Previous
Next

Activity

Activity level is determined by the age at which signs or symptoms develop. Infants with large left-to-right shunts, particularly with complex left heart obstruction, will present soon after birth with congestive heart failure symptoms of poor feeding, diaphoresis, and tachypnea. Patients with small left-to-right shunts without aortic valve insufficiency or with only trivial aortic valve insufficiency generally should be allowed full activity without restriction.

Older patients with more significant aortic valve insufficiency should be restricted from competitive athletics and from sustained isometric types of activities (eg, weightlifting, rope pulls, sustained heavy lifting on the job).

Previous
 
 
Contributor Information and Disclosures
Author

Ira H Gessner, MD Professor Emeritus, Pediatric Cardiology, University of Florida College of Medicine

Ira H Gessner, MD is a member of the following medical societies: American Academy of Pediatrics, American College of Cardiology, American Heart Association, American Pediatric Society, Society for Pediatric Research

Disclosure: Nothing to disclose.

Coauthor(s)

Edward J Bayne, MD Assistant Professor, Division of Pediatric Cardiology, Emory University School of Medicine

Edward J Bayne, MD is a member of the following medical societies: Alpha Omega Alpha, American Academy of Pediatrics, American Society of Echocardiography, American College of Cardiology, American Heart Association

Disclosure: Nothing to disclose.

Chief Editor

Howard S Weber, MD, FSCAI Professor of Pediatrics, Section of Pediatric Cardiology, Pennsylvania State University College of Medicine; Director of Interventional Pediatric Cardiology, Penn State Hershey Children's Hospital

Howard S Weber, MD, FSCAI is a member of the following medical societies: American Academy of Pediatrics, American College of Cardiology, Society for Cardiovascular Angiography and Interventions

Disclosure: Received income in an amount equal to or greater than $250 from: St. Jude Medical.

Acknowledgements

Juan Carlos Alejos, MD Clinical Professor, Department of Pediatrics, Division of Cardiology, University of California, Los Angeles, David Geffen School of Medicine

Juan Carlos Alejos, MD is a member of the following medical societies: American Academy of Pediatrics, American College of Cardiology, American Heart Association, American Medical Association, and International Society for Heart and Lung Transplantation

Disclosure: Actelion Honoraria Speaking and teaching

Hugh D Allen, MD Professor, Department of Pediatrics, Division of Pediatric Cardiology and Department of Internal Medicine, Ohio State University College of Medicine

Hugh D Allen, MD is a member of the following medical societies: American Academy of Pediatrics, American College of Cardiology, American Heart Association, American Pediatric Society, American Society of Echocardiography, Society for Pediatric Research, Society of Pediatric Echocardiography, and Western Society for Pediatric Research

Disclosure: Nothing to disclose.

Mary L Windle, PharmD Adjunct Associate Professor, University of Nebraska Medical Center College of Pharmacy; Editor-in-Chief, Medscape Drug Reference

Disclosure: Nothing to disclose.

References
  1. McDaniel NL, Gutgesell HP. Ventricular septal defects. Allen HD, Driscoll DJ, Shaddy RE, Feltes TF. Moss and Adams' Heart Disease in Infants, Children, and Adolescents. 7th ed. Philadelphia: Wolters Kluwer/ Lippincott Williams & Wilkins; 2008. 667-682.

  2. Wilson W, Taubert KA, Gewitz M, et al. Prevention of infective endocarditis: guidelines from the American Heart Association: a guideline from the American Heart Association Rheumatic Fever, Endocarditis, and Kawasaki Disease Committee, Council on Cardiovascular Disease in the Young, and the Council on Clinical Cardiology, Council on Cardiovascular Surgery and Anesthesia, and the Quality of Care and Outcomes Research Interdisciplinary Working Group. Circulation. 2007 Oct 9. 116(15):1736-54. [Medline]. [Full Text].

  3. Anderson RH, Wilcox BR. The surgical anatomy of ventricular septal defects associated with overriding valvar orifices. J Card Surg. 1993 Mar. 8(2):130-42. [Medline].

  4. Cheung YF, Chiu CS, Yung TC. Impact of preoperative aortic cusp prolapse on long-term outcome after surgical closure of subarterial ventricular septal defect. Ann Thorac Surg. 2002 Feb. 73(2):622-7. [Medline].

  5. Ho SY, Baker EJ, Rigby ML. Color Atlas of Congenital Heart Disease: Morphologic and Clinical Correlations. St Louis, MO: Mosby-Wolfe; 1995.

  6. Eroglu AG, Oztunc F, Saltik L, et al. Evolution of ventricular septal defect with special reference to spontaneous closure rate, subaortic ridge and aortic valve prolapse. Pediatr Cardiol. 2003 Jan-Feb. 24(1):31-5. [Medline].

  7. Mori K, Matsuoka S, Tatara K, et al. Echocardiographic evaluation of the development of aortic valve prolapse in supracristal ventricular septal defect. Eur J Pediatr. 1995 Mar. 154(3):176-81. [Medline].

  8. Gittenberger-De Groot AC, Poelmann RE. Normal and abnormal cardiac development. Moller JH, Hoffman JI, eds. Pediatric Cardiovascular Medicine. New York, NY: Churchill Livingstone; 2000. 3-20.

  9. Boot MJ, Steegers-Theunissen RP, Poelmann RE, van Iperen L, Gittenberger-de Groot AC. Cardiac outflow tract malformations in chick embryos exposed to homocysteine. Cardiovasc Res. 2004 Nov 1. 64(2):365-73. [Medline].

  10. Momma K, Ando M, Matsuoka R, Joo K. Interruption of the aortic arch associated with deletion of chromosome 22q11 is associated with a subarterial and doubly committed ventricular septal defect in Japanese patients. Cardiol Young. 1999 Sep. 9(5):463-7. [Medline].

  11. Leung MP, Beerman LB, Siewers RD, et al. Long-term follow-up after aortic valvuloplasty and defect closure in ventricular septal defect with aortic regurgitation. Am J Cardiol. 1987 Oct 1. 60(10):890-4. [Medline].

  12. Rhodes LA, Keane JF, Keane JP, et al. Long follow-up (to 43 years) of ventricular septal defect with audible aortic regurgitation. Am J Cardiol. 1990 Aug 1. 66(3):340-5. [Medline].

  13. Elgamal MA, Hakimi M, Lyons JM, Walters HL III. Risk factors for failure of aortic valvuloplasty in aortic insufficiency with ventricular septal defect. Ann Thorac Surg. 1999 Oct. 68(4):1350-5. [Medline].

  14. Zuberbuhler JR. Ventricular septal defect. Clinical Diagnosis in Pediatric Cardiology. London, England: Churchill Livingstone; 1981. 39-45.

  15. Cheng TO, Xie MX, Wang XF, Wang Y, Lu Q. Real-time 3-dimensional echocardiography in assessing atrial and ventricular septal defects: an echocardiographic-surgical correlative study. Am Heart J. 2004 Dec. 148(6):1091-5. [Medline].

  16. Masaki N, Iwatsuka R, Nagahori W, et al. Three-dimensional echocardiography could distinguish a ventricular septal defect adjacent to asymptomatic ruptured sinus of valsalva aneurysm. J Cardiol. 2008 Apr. 51(2):139-43. [Medline].

  17. Freedom RM, Mawson JB, Yoo SJ. Ventricular septal defect. Freedom RM, et al, eds. Congenital Heart Disease: Textbook of Angiocardiography. Futura Publishing Co; 1997. 189-218.

  18. Wang ZJ, Reddy GP, Gotway MB, et al. Cardiovascular shunts: MR imaging evaluation. Radiographics. 2003 Oct. 23 Spec No:S181-94. [Medline]. [Full Text].

  19. Yacoub MH, Khan H, Stavri G, et al. Anatomic correction of the syndrome of prolapsing right coronary aortic cusp, dilatation of the sinus of Valsalva, and ventricular septal defect. J Thorac Cardiovasc Surg. 1997 Feb. 113(2):253-60; discussion 261. [Medline].

  20. Komai H, Naito Y, Fujiwara K, Noguchi Y, Nishimura Y, Uemura S. Surgical strategy for doubly committed subarterial ventricular septal defect with aortic cusp prolapse. Ann Thorac Surg. 1997 Oct. 64(4):1146-9. [Medline].

  21. Lin K, Zhu D, Tao K, Gan C, Tang H, Feng Y, et al. Hybrid perventricular device closure of doubly committed subarterial ventricular septal defects: mid-term results. Catheter Cardiovasc Interv. 2013 Sep 1. 82(3):E225-32. [Medline].

  22. Pan S, Xing Q, Cao Q, Wang P, Duan S, Wu Q, et al. Perventricular device closure of doubly committed subarterial ventral septal defect through left anterior minithoracotomy on beating hearts. Ann Thorac Surg. 2012 Dec. 94(6):2070-5. [Medline].

  23. Leung MP, Chau KT, Chiu C, Yung TC, Mok CK. Intraoperative TEE assessment of ventricular septal defect with aortic regurgitation. Ann Thorac Surg. 1996 Mar. 61(3):854-60. [Medline].

  24. Levine HJ, Gaasch WH. Vasoactive drugs in chronic regurgitant lesions of the mitral and aortic valves. J Am Coll Cardiol. 1996 Nov 1. 28(5):1083-91. [Medline].

 
Previous
Next
 
Parasternal long-axis echocardiogram view showing supracristal ventricular septal defect (arrow) with buckling and prolapse (***) of the right coronary cusp of the aortic valve.
Parasternal short-axis echocardiogram view with color Doppler showing proximity of ventricular septal defect jet to the pulmonic valves. The patient is an infant with neither aortic valve prolapse nor aortic insufficiency.
Subcostal "right ventricular inflow/outflow" view showing the close relationship between the aortic and pulmonic valves in the presence of supracristal ventricular septal defect. Turbulent shunt flow is shown directed into the main pulmonary artery. The patient is an infant with neither aortic valve prolapse nor insufficiency.
Transesophageal horizontal view of aortic root and right ventricle, showing sinus of Valsalva aneurysm leaking through a supracristal ventricular septal defect (VSD)(>
 
 
 
All material on this website is protected by copyright, Copyright © 1994-2016 by WebMD LLC. This website also contains material copyrighted by 3rd parties.