Close
New

Medscape is available in 5 Language Editions – Choose your Edition here.

 

Pediatric Pacemaker Implantation Medication

  • Author: Charles I Berul, MD; Chief Editor: Stuart Berger, MD  more...
 
Updated: Apr 01, 2014
 

Medication Summary

The goals of pharmacotherapy are to reduce morbidity and prevent complications.

Next

Antibiotics, Other

Class Summary

Routinely, cefazolin 1 g is administered intravenously (IV) 1 hour before the procedure. If the patient is allergic to penicillins or cephalosporins, vancomycin 1 g IV or another appropriate antibiotic may be administered preoperatively.

Cefazolin

 

Cefazolin is a first-generation semisynthetic cephalosporin that arrests bacterial cell wall synthesis, inhibiting bacterial growth.

Vancomycin

 

Vancomycin is a potent antibiotic that is directed against gram-positive organisms and that is active against Enterococcus species. Vancomycin is indicated for patients who cannot receive or have not responded to penicillins and cephalosporins and for patients who have infections with resistant staphylococci.

Previous
Next

Local Anesthetics, Amides

Class Summary

Local anesthetics block the initiation and conduction of nerve impulses.Anesthetics used for the permanent pacemaker insertion include bupivacaine and lidocaine.

Bupivacaine (Marcaine)

 

Bupivacaine decreases permeability to sodium ions in neuronal membranes. This results in the inhibition of depolarization, blocking the transmission of nerve impulses.

Lidocaine (Xylocaine)

 

Lidocaine is an amide local anesthetic used in 1-2% concentration. The 1% preparation contains 10 mg of lidocaine for each 1 mL of solution; the 2% preparation contains 20 mg of lidocaine for each 1 mL of solution. Lidocaine inhibits depolarization of type C sensory neurons by blocking sodium channels.

To improve local anesthetic injection, cool the skin with ethyl chloride before injection. Use smaller-gauge needles (eg, 27 gauge or 30 gauge). Make sure the solution is at body temperature. Infiltrate very slowly to minimize the pain. The time from administration to onset of action is 2-5 minutes, and the effect lasts for 1.5-2 hours.

Previous
 
Contributor Information and Disclosures
Author

Charles I Berul, MD Professor of Pediatrics and Integrative Systems Biology, George Washington University School of Medicine; Chief, Division of Cardiology, Children's National Medical Center

Charles I Berul, MD is a member of the following medical societies: American Academy of Pediatrics, Heart Rhythm Society, Cardiac Electrophysiology Society, Pediatric and Congenital Electrophysiology Society, American College of Cardiology, American Heart Association, Society for Pediatric Research

Disclosure: Received grant/research funds from Medtronic for consulting.

Chief Editor

Stuart Berger, MD Medical Director of The Heart Center, Children's Hospital of Wisconsin; Associate Professor, Department of Pediatrics, Section of Pediatric Cardiology, Medical College of Wisconsin

Stuart Berger, MD is a member of the following medical societies: American Academy of Pediatrics, American College of Cardiology, American College of Chest Physicians, American Heart Association, Society for Cardiovascular Angiography and Interventions

Disclosure: Nothing to disclose.

Acknowledgements

John W Moore, MD, MPH Professor of Clinical Pediatrics, Section of Pediatric Cardiology, Department of Pediatrics, University of California San Diego School of Medicine; Director of Cardiology, Rady Children's Hospital

John W Moore, MD, MPH is a member of the following medical societies: American Academy of Pediatrics, American College of Cardiology, and Society for Cardiac Angiography and Interventions

Disclosure: Nothing to disclose.

Jeffrey Allen Towbin, MD, MSc, FAAP, FACC, FAHA Professor, Departments of Pediatrics (Cardiology), Cardiovascular Sciences, and Molecular and Human Genetics, Baylor College of Medicine; Chief of Pediatric Cardiology, Foundation Chair in Pediatric Cardiac Research, Texas Children's Hospital

Jeffrey Allen Towbin, MD, MSc, FAAP, FACC, FAHA is a member of the following medical societies: American Academy of Pediatrics, American Association for the Advancement of Science, American College of Cardiology, American College of Sports Medicine, American Heart Association, American Medical Association, American Society of Human Genetics, Cardiac Electrophysiology Society, New York Academy of Sciences, Society for Pediatric Research,Texas Medical Association, and Texas Pediatric Society

Disclosure: Nothing to disclose.

Mary L Windle, PharmD Adjunct Associate Professor, University of Nebraska Medical Center College of Pharmacy; Editor-in-Chief, Medscape Drug Reference

Disclosure: Nothing to disclose.

References
  1. Alexander ME, Cecchin F, Walsh EP, Triedman JK, Bevilacqua LM, Berul CI. Implications of implantable cardioverter defibrillator therapy in congenital heart disease and pediatrics. J Cardiovasc Electrophysiol. 2004 Jan. 15(1):72-6. [Medline].

  2. DeMaso DR, Lauretti A, Spieth L, et al. Psychosocial factors and quality of life in children and adolescents with implantable cardioverter-defibrillators. Am J Cardiol. 2004. 93:582-7. [Medline].

  3. Silka MJ, Bar-Cohen Y. Pacemakers and implantable cardioverter-defibrillators in pediatric patients. Heart Rhythm. 2006 Nov. 3(11):1360-6. [Medline].

  4. Smerup M, Hjertholm T, Johnsen SP, et al. Pacemaker implantation after congenital heart surgery: risk and prognosis in a population-based follow-up study. Eur J Cardiothorac Surg. 2005 Jul. 28(1):61-8. [Medline].

  5. Chintala K, Forbes TJ, Karpawich PP. Effectiveness of transvenous pacemaker leads placed through intravascular stents in patients with congenital heart disease. Am J Cardiol. 2005 Feb 1. 95(3):424-7. [Medline].

  6. Cecchin F, Frangini PA, Brown DW, et al. Cardiac Resynchronization Therapy (and Multisite Pacing) in Pediatrics and Congenital Heart Disease: Five Years Experience in a Single Institution. J Cardiovasc Electrophysiol. 2008 Sep 3. [Medline].

  7. Dubin AM, Janousek J, Rhee E, et al. Resynchronization therapy in pediatric and congenital heart disease patients: an international multicenter study. J Am Coll Cardiol. 2005 Dec 20. 46(12):2277-83. [Medline].

  8. Epstein AE, DiMarco JP, Ellenbogen KA, et al. ACC/AHA/HRS 2008 Guidelines for Device-Based Therapy of Cardiac Rhythm Abnormalities: a report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines (Writing Committee to Revise the ACC/AHA/NASPE 2002 Guideline Update for Implantation of Cardiac Pacemakers and Antiarrhythmia Devices) developed in collaboration with the American Association for Thoracic Surgery and Society of Thoracic Surgeons. J Am Coll Cardiol. 2008 May 27. 51(21):e1-62. [Medline].

  9. Gregoratos G, Abrams J, Epstein AE, et al. ACC/AHA/NASPE 2002 guideline update for implantation of cardiac pacemakersand antiarrhythmia devices: summary article: a report of the American College of Cardiology/AmericanHeart Association Task Force on Practice Guidelines (ACC/AHA/NASPE Committee t. Circulation. 2002 Oct 15. 106(16):2145-61. [Medline].

  10. Gregoratos G, Cheitlin MD, Conill A. ACC/AHA guidelines for implantation of cardiac pacemakers and antiarrhythmia devices: a report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines (Committee on Pacemaker Implantation). J Am Coll Cardiol. 1998 Apr. 31(5):1175-209. [Medline].

  11. Horenstein MS, Karpawich PP. Pacemaker syndrome in the young: do children need dual chamber as the initial pacing mode?. Pacing Clin Electrophysiol. 2004 May. 27(5):600-5. [Medline].

  12. Mathony U, Schmidt H, Groger C, et al. Optimal maximum tracking rate of dual-chamber pacemakers required by children and young adults for a maximal cardiorespiratory performance. Pacing Clin Electrophysiol. 2005 May. 28(5):378-83. [Medline].

  13. Ovsyshcher IE, Hayes DL, Furman S. Dual-chamber pacing is superior to ventricular pacing: fact or controversy? [comment]. Circulation. 1998 Jun 16. 97(23):2368-70. [Medline].

  14. Silvetti MS, Drago F. Upgrade of single chamber pacemakers with transvenous leads to dual chamber pacemakers in pediatric and young adult patients. Pacing Clin Electrophysiol. 2004 Aug. 27(8):1094-8. [Medline].

  15. Fishberger SB, Wernovsky G, Gentles TL, et al. Long-term outcome in patients with pacemakers following the Fontan operation. Am J Cardiol. 1996 Apr 15. 77(10):887-9. [Medline].

  16. Noiseux N, Khairy P, Fournier A, Vobecky SJ. Thirty years of experience with epicardial pacing in children. Cardiol Young. 2004 Oct. 14(5):512-9. [Medline].

  17. Stojanov P, Vranes M, Velimirovic D, et al. Prevalence of venous obstruction in permanent endovenous pacing in newborns and infants: follow-up study. Pacing Clin Electrophysiol. 2005 May. 28(5):361-5. [Medline].

  18. Fortescue EB, Berul CI, Cecchin F, Walsh EP, Triedman JK, Alexander ME. Comparison of modern steroid-eluting epicardial and thin transvenous pacemaker leads in pediatric and congenital heart disease patients. J Interv Card Electrophysiol. 2005 Oct. 14(1):27-36. [Medline].

  19. Fortescue EB, Berul CI, Cecchin F, Walsh EP, Triedman JK, Alexander ME. Patient, procedural, and hardware factors associated with pacemaker lead failures in pediatrics and congenital heart disease. Heart Rhythm. 2004 Jul. 1(2):150-9. [Medline].

  20. Berul CI, Hill SL, Estes NA 3rd. A teenager with pacemaker twiddler syndrome. J Pediatr. 1997 Sep. 131(3):496-7. [Medline].

  21. Molina JE, Dunnigan AC, Crosson JE. Implantation of transvenous pacemakers in infants and small children. Ann Thorac Surg. 1995 Mar. 59(3):689-94. [Medline].

 
Previous
Next
 
Electrocardiogram reveals sinus atrial mechanism with complete atrioventricular block and ventricular paced rhythm.
Electrocardiogram illustrates 2-year-old child with third-degree atrioventricular block.
Electrocardiogram illustrates atrial-synchronous, ventricular paced rhythm.
Illustration of normal conduction system.
Transvenous ventricular pacemaker in 2-year-old child. Note abundant slack in lead to allow for growth.
Epicardial dual-chamber implantable cardioverter defibrillator in neonate with congenital complete atrioventricular block. Two bipolar suture-on leads (1 on atrium and 1 on ventricle) are attached to DDDR pacemaker in abdomen.
 
 
 
All material on this website is protected by copyright, Copyright © 1994-2016 by WebMD LLC. This website also contains material copyrighted by 3rd parties.