Medscape is available in 5 Language Editions – Choose your Edition here.


Surgical Approach to Coarctation of the Aorta and Interrupted Aortic Arch Treatment & Management

  • Author: Dale K Mueller, MD; Chief Editor: Jonah Odim, MD, PhD, MBA  more...
Updated: Mar 30, 2015

Medical Therapy

The role of medical therapy in coarctation is limited. Medical therapy is confined to preoperative temporization to optimize the patient's hemodynamic status before surgery.

Since 1984, medical therapy of coarctation has revolved around the introduction of prostaglandin E1 (PGE1) therapy. PGE1 allows for reopening of the ductus arteriosus and perfusion to the lower body. When PGE1 therapy is effective, the severe acidosis and oliguria, which are often present, are corrected by reestablishing blood flow to the lower body. Optimizing the patient's hemodynamic status and converting an otherwise emergency procedure into an elective one can substantially reduce the mortality risk.

For additional information, please see Coarctation of the Aorta.


Surgical Therapy

Several techniques are currently used to repair coarctation of the aorta. The method of repair is usually tailored to each patient. To help determine the operative approach, consider the length of the segment involved and whether associated anomalies are present.[18]

Several surgical methods of repair are used, including end-to-end reanastomosis, subclavian flap aortoplasty, prosthetic patch onlay grafts, and interposition grafts (see Intraoperative details).

Many variations of the described procedures have been used throughout the years, including modification of the subclavian flap that include reimplantation, end-to-end anastomosis using the subclavian to enlarge the anastomosis, and ascending aorta–to–descending aorta bypass grafts. All of these techniques may be useful depending on the individual anatomy and associated anomalies.[19]

The repair of associated anomalies at the time of aortic coarctation repair remains controversial. Optimal management remains unclear. If concurrent repair of associated anomalies is to be attempted at the time of coarctation repair, the best approach is by means of a median sternotomy.[20] Coarctation repair is then carried out in a manner to that used to repair an interrupted aortic arch (IAA).

Current knowledge suggests ligation and division if a patent ductus is present. A bicuspid aortic valve can usually be left untreated. Strategy for concurrent ventricular septal defect (VSD) repair remains somewhat unclear. Previous studies indicated greatest survival in patients who underwent coarctation repair with pulmonary artery banding; but this has fallen out of favor due to the frequency of subsequent avoidable procedures and associated morbidities. If preoperative congestive heart failure (CHF) does not resolve, a second operation is required to close the VSD. If the VSD does spontaneously close, a debanding procedure is required.

Numerous VSDs associated with coarctation do spontaneously close, avoiding the need for cardiopulmonary bypass; this leads some to favor a 2-stage procedure. In 1992, Park et al demonstrated that this suggestion was a feasible option in 23 infants younger than 3 months, 9 of whom required no further treatment.[11] Six required early closure of the VSD, and 8 required late repair. Seven more were older than 3 months, and none required repair of the VSD.

More recent reports attempt to outline predictors of spontaneous VSD closure. Considerations in decision for simultaneous VSD repair include the magnitude of the shunt through the VSD, the likelihood of persistent symptoms in the postoperative period, and whether the VSD is a type likely to spontaneously close. Initial coarctation repair is ideal when the VSD is likely to close, a band is not required, and arch hypoplasia is not present. Large size defects, defined as those with diameter greater than 50% of the aortic valve annulus, and types other than muscular such as perimembranous, inlet, outlet, and malaligned are less likely to close.

Proximal arch hypoplasia is best addressed through a midline sternotomy to alleviate the risk of recurrent obstruction, thus a combined repair strategy is favored in this situation.[21] Despite the controversy, many surgeons simply prefer to repair a clinically significant VSD when the coarctation is addressed to avoid the obvious disadvantages of the 2-stage approach.

In a retrospective analysis, Kanter et al described in detail the advantages and disadvantages of the 1-stage and 2-stage approaches and introduce the 1-stage 2-incision approach.[22] All approaches have similar survival and rates of recoarctation, but the 1-stage 2-incision method results in shorter lengths of stay and corrects all defects at once without palliation and without the use of circulatory arrest or regional perfusion. The study advocates strategy selection on an individual basis.


Intraoperative Details

End-to-end reanastomosis

One of the most common methods of repair is resection of the involved segment with end-to-end reanastomosis. This repair is usually reserved for infants and small children because of the absence of enlarged collaterals and the short distance for reanastomosis. In adolescents and adults, direct anastomosis is challenging because of large collaterals and the length of the aorta necessary for adequate repair.

Note the following:

  • Place the patient in the right lateral decubitus position. The arterial line should be placed in the right radial artery, and a blood pressure cuff is placed on the right arm and lower extremity.
  • Make a left posterolateral thoracotomy incision.
  • Retract the lung anteriorly and inferiorly to allow for identification and incision of the pleura that overlies the descending aorta.
  • Perform careful dissection from the proximal aorta at the level of the innominate artery takeoff, to the ductus, and then as far distal as safely possible. This step includes mobilizing the intercostals arteries. The present authors prefer not to sacrifice the intercostal vessels if at all possible.
  • Avoid damage to the left recurrent laryngeal nerve, the vagus nerve, and the phrenic nerve, all which lie in the dissection field.
  • After the plane of dissection is developed, the critical component of the procedure is resection of the entire coarcted segment and ductal tissue, followed by reconstruction of the aorta without clinically significant tension on the anastomosis.
  • In general, heparin 100 units/kg is systemically administered.
  • The aorta is cross-clamped at the proximal aspect just beyond the innominate artery takeoff and at the distal aspect about 1 interspace below the coarctation. The intercostal vessels may be controlled with a vessel loop or clip.
  • The ductus is then ligated and divided if necessary. Ligating the ductus before aortic clamping creates a possibility of a ductal tear, which may be catastrophic.
  • The involved aortic segment is then resected.
  • Using a continuous absorbable monofilament suture (eg, Maxon, PDS), create the anastomosis. Release the distal aortic clamp before tying the suture to avoid "purse-stringing" of the anastomosis.
  • At the termination of the procedure, identify any residual gradient by measuring the patient's blood pressure in the lower extremity by comparing that pressure to the pressure in the right arm.
  • Transesophageal echocardiography can be useful to estimate the gradients during surgery.
  • Benefits of this particular technique include avoidance of prosthetic materials, excision of ductal tissue, preservation of the left subclavian artery, total relief of left ventricular outflow obstruction, and growth potential of the aortic anastomosis.

Subclavian-flap aortoplasty

A second commonly employed method is the subclavian-flap aortoplasty, as follows:

  • For this procedure, perform a left thoracotomy. The initial dissection follows that of the end-to-end anastomosis.
  • Identify the left subclavian and ligate it at the first branch. Ligate the vertebral artery to avoid subclavian steal.
  • Make a lengthwise incision along the coarctation, continuing on to the subclavian and creating a flap.
  • Then, resect the posterior shelf and turn down and place the subclavian flap to enlarge the constricted area, ensuring an adequate length.
  • Benefits of this technique include avoidance of prosthetic materials, decreased cross-clamp time, and the possibility that the anastomosis may grow as the child ages.

Prosthetic-patch onlay graft

First performed in 1957, this technique has fallen out of favor because of the need for prosthetic implants and the risk of aneurysms and pseudoaneurysms.[23] The differential elasticity of the often-rigid grafts (historically made of Dacron) in relation to the supple aorta is believed to increase the rate of aneurysmal formation. Literature from more recent experience with homograft patch material (used extensively in arch reconstruction for hypoplastic left-heart syndrome) has not shown an increased rate of aneurysmal formation.

Note the following:

  • With the prosthetic patch onlay graft, perform a left thoracotomy and make a longitudinal incision along the coarcted segment.
  • In this case, do not resect the posterior shelf.
  • Sew a prosthetic patch into place, thereby enlarging the lumen.

Interposition grafts

Interposition grafts are most often used in older patients who have exceeded their growth potential. Interposition grafts are also useful when the narrowed segment cannot be completely excised without making primary reanastomosis impossible. In 1951, Gross used aortic homografts as interposition grafts and reported no clinically significant complications in 70 patients other than graft calcification, which was present in less than 50%. Aneurysmal dilatation has not been reported. The technique of interposition graft is selectively used in individuals with complex coarctation, recurrence, or aneurysmal formation.


Postoperative Details

Always measure the arm and/or leg gradient after surgery to differentiate inadequate repair from true recoarctation. In the optimal case, perform exercise testing for best accuracy because some patients do not have a gradient except during and after exercise. Although exercise testing is not a feasible option in infants and neonates, it is an excellent test for follow-up observation of adolescent patients.



Follow-up care of the patient with coarctation can range from an office visit with physical examination and the measurement of arm and/or leg gradients to repeat aortography to directly measure any residual gradients and to identify any anatomic problems.

With the advent of advanced echocardiography, physicians are increasingly willing to rely on the noninvasive results obtained with this technique. Echocardiography can enable a good approximation of the anatomy, and it provides a good estimation of gradients.

Causes implicated in recoarctation include inadequate resection of ductal tissue, failure of anastomotic growth, and suture-line thrombosis.



Given the technical complexity of coarctation repair, the list of complications is remarkably short. Many of the complications are not specific to coarctation but are common with other cardiac procedures; these include hemorrhage, infection, chylothorax (from injuries to the thoracic duct), suture line thrombosis, and suboptimal repair or recurrence.

Numerous complications are unique to both aortic surgery and coarctation. A 2-phased phenomenon of paradoxic hypertension can occur after coarctation repair. During the first phase, systolic blood pressure rises throughout the first 24-36 hours after the operation. This rise is believed to result from activation of the sympathetic nervous system with elevation of serum catecholamine levels. A rise in diastolic blood pressure occurs later and is a result of activation of the renin-angiotensin system.

Another complication unique to coarctation repair is the postcoarctectomy syndrome of abdominal pain and distension that Sealy first described in 1957. As many as 20% of patients have this complication, and laparotomy may be necessary. In 1985, Kawauchi et al noted that mesenteric ischemia secondary to acute necrotizing arteritis appeared to be the cause.[24] Recent data suggest that aggressive control of postoperative hypertension usually prevents the full-blown syndrome. In addition, this phenomenon appears to be associated with coarctation in older patients, as this complication is rarely seen with infants and small children.

The most worrisome complication after coarctation repair continues to be paraplegia, which occurring in 0.1-1% of neonates after coarctation repair. No definitive predisposing factors are known. Current data suggest that poor collaterals, anomalies of the origin of the right subclavian artery, distal hypertension during cross-clamp, reoperation, or relative hyperthermia during the operation may all contribute to the incidence of paraplegia. The incidence in the adult population undergoing coarctation repair rises proportionately with age and is as high as 2.6%.

The tremendous variation in spinal-cord blood supply, including the elusive artery of Adamkiewicz, makes predicting adequate collateral flow extraordinarily difficult. Some theories suggest that maintaining a distal aortic pressure of more than 60 mm Hg may help to prevent cord ischemia (as measured by means of maintenance of somatosensory evoked potentials), and some have suggested using a shunt to achieve this if necessary. In 1987, Cunningham demonstrated that distal hypertension with loss of somatosensory evoked potentials for more than 30 minutes resulted in a more than 70% incidence of paraplegia.[25]

Other complications include temporary or permanent hoarseness from recurrent injury to the laryngeal nerve. The nerve can be directly injured by transection or indirectly by retraction. Careful identification of the anatomy and knowledge of the course of the recurrent laryngeal nerve is critical to avoid this complication.


Outcome and Prognosis

Outcomes from coarctation repair depend on several factors, most notably the patient's age at the time of operation, the method of repair, and the presence of associated anomalies.

The recoarctation rate with the end-to-end repair has historically approached 60%, with somewhat lower rates for subclavian-flap aortoplasty and prosthetic graft repair. However, recent studies have demonstrated that end-to-end repair favorably compares with other techniques, with recoarctation rates of only 5-10%.[9]

Some suggested reasons for this dramatic change are improved neonatal ICUs and advances in vascular surgical technique and suture materials. Improved preoperative conditioning and increased use of prostaglandins have also contributed to lowered mortality rates. Circumferential suture lines were initially blamed for high rates of recoarctation; however, because this technique was perfected with the arterial switch operation, they should likely prove effective for coarctation as well. At this time, the current authors know of no prospective randomized trials that are being conducted to compare the repair techniques.

Overall mortality rates are still 2-10% in neonates, which includes those with intracardiac anomalies as well as those with coarctation.

A 1998 retrospective study of 176 patients by Seirafi and associates demonstrated an overall mortality rate of 7.4%.[26] Nine of 13 deaths were in patients with associated complex intracardiac anomalies. No mortality occurred in the 113 patients with isolated coarctation. A 15% incidence of residual or recurrent coarctation was reported, although neither the patient's age at operation nor the type of repair appeared to influence recurrence. The other major complication was persistent hypertension, which was associated with repair in patients older than 1 year (27% vs 4.2%).

In 1998, Backer and associates reported a series of 55 infants who underwent repair by using extended resection with end-to-end reanastomosis.[27] They reported a 5.4% mortality rate and a 3.6% rate of recurrence. The median age at surgery was 21 days. A total of 62% of surgeries performed through a left thoracotomy and the others through a median sternotomy with concurrent repair of associated anomalies. About 47% of patients had isolated coarctation, and 53% had at least 1 associated intracardiac anomaly, with ventricular septal defect (VSD) comprising 69% of those anomalies. Total resection of all ductal tissue was achieved.

In 2000, Allen and associates described a modified subclavian patch aortoplasty.[28] They demonstrated excellent results in 53 infants with no mortality and only a 4% incidence of clinically significant recoarctation. Of these instances, 49% were associated with cardiac anomalies. As with all techniques, the key features to this technique are a tension-free repair and a long aortotomy to help prevent restenosis.

Despite some excellent outcomes, controversy remains over the use of flap aortoplasty in infants younger than 3 months. Potential pitfalls are associated with early use of this technique, most notably concern over the loss of the major vascular supply to the left upper extremity. Complications are rare (the left subclavian was historically divided for pulmonary systemic shunts, with complications occurring rarely); however, decreased growth and rare reports of ischemia and gangrene have been documented.[29] In addition, neonates most often have associated arch hypoplasia, which is better addressed with resection and end-to-end anastomosis than with other methods. Complete hypoplasia of the aortic arch is best addressed by means of arch reconstruction performed through a median sternotomy.

The prosthetic-path onlay technique has the advantages of a relatively short operating time, minimal dissection, maximal augmentation of the stenosed area, and maintenance of normal vascular anatomy. However, this technique has been associated with an aneurysmal-development rate of as much as 35%, and repeat operation is required in almost 20% of patients.[23]


Future and Controversies

Balloon angioplasty has been performed for more than 20 years; however, its use in coarctation remains controversial because of the formation of pseudoaneurysms and concerns about long-term patency. The surgical literature shows a high restenosis rate for neonatal (< 40 d) balloon angioplasty; 57% need surgical intervention. However, in the population with surgically treated restenosis (18%), secondary angioplasty is the treatment of choice, and no repeat interventions were necessary.[30]

A long-term randomized study of angioplasty versus surgery in children (3-10 y) showed that only 50% of patients treated with balloon angioplasty remained free of both aneurysmal formation and repeat intervention compared with 87.5% of surgically treated subjects.[31]

At present, the optimal timing and mode of treatment for patients with coarctation remains controversial. In neonates and young children, surgical intervention remains the criterion standard. It is well-tolerated, with excellent long-term efficacy due to an 88-96% 5 years freedom from reintervention. Balloon angioplasty carries a higher risk of complication and suboptimal outcome in as many as 19% of native coarctation cases. Stents overcome some of the problems inherent to simple dilation but are not without serious complications related to materials and biomechanics.

No evidence suggests superiority of an endovascular therapy over surgery for treatment of primary coarctation.[32] However, for patients with hemodynamic instability or for those who have undergone surgery for restenosis, angioplasty can be a palliative and potentially curative procedure. Al-Ata et al studied a series of infants with complex aortic coarctations and relative contraindications to surgery who underwent palliative stent implantation as a nondefinitive procedure.[33] Three of the four improved and eventually underwent definitive repair.

Stent placement in infants has also been studied, although (to the authors' knowledge) no long-term results have been reported. A report published in 2000 by Thanopoulos et al suggests that stent implantation can be performed with low morbidity and mortality rates and that no recoarctation was noted in any of the 17 patients who were examined at the age of 33 months.[7] Peak systolic gradients were reduced to just 2.1 mm Hg from 50 mm Hg. A report of retrospective study by Marshall et al in 2000 suggested that, although stent implantation was a feasible option for challenging cases, it was not without a risk of serious complications.[34]

Stent placement is still under investigation in adolescents and adults, and long-term data is still being released. A nonrandomized selection-biased case series describes initial and 5-year outcomes for stent placement to treat adult aortic coarctation. Complications included a single incidence of stent migration requiring percutaneous intervention and a femoral pseudoaneurysm requiring surgical correction. Complete relief of coarctation was achieved with no recoarctation.[35] A retrospective review of endovascular stent placement to treat thoracic aortic aneurysm following repair of aortic coarctation in a select few patients revealed promising, yet nondefinitive results.[36]

The future of aortic coarctation repair may include direct genetic intervention or in utero therapy, which may decrease the growth of ductal tissue into the main aorta or which may help alter neonatal blood flow in such a way to prevent coarctation completely. Until that time, surgical techniques will continue to improve, and the use of angioplasty should continue as studies continue to find the subset of patients in whom it will prove most useful.

Contributor Information and Disclosures

Dale K Mueller, MD Co-Medical Director of Thoracic Center of Excellence, Chairman, Department of Cardiovascular Medicine and Surgery, OSF Saint Francis Medical Center; Cardiovascular and Thoracic Surgeon, HeartCare Midwest, Ltd, A Subsidiary of OSF Saint Francis Medical Center; Section Chief, Department of Surgery, University of Illinois at Peoria College of Medicine

Dale K Mueller, MD is a member of the following medical societies: American College of Chest Physicians, American College of Surgeons, American Medical Association, Chicago Medical Society, Illinois State Medical Society, International Society for Heart and Lung Transplantation, Society of Thoracic Surgeons, Rush Surgical Society

Disclosure: Received consulting fee from Provation Medical for writing.

Specialty Editor Board

Mary L Windle, PharmD Adjunct Associate Professor, University of Nebraska Medical Center College of Pharmacy; Editor-in-Chief, Medscape Drug Reference

Disclosure: Nothing to disclose.

Mary C Mancini, MD, PhD, MMM Professor and Chief of Cardiothoracic Surgery, Department of Surgery, Louisiana State University School of Medicine in Shreveport

Mary C Mancini, MD, PhD, MMM is a member of the following medical societies: American Association for Thoracic Surgery, American College of Surgeons, American Surgical Association, Society of Thoracic Surgeons, Phi Beta Kappa

Disclosure: Nothing to disclose.

Chief Editor

Jonah Odim, MD, PhD, MBA Section Chief of Clinical Transplantation, Transplantation Branch, Division of Allergy, Immunology, and Transplantation, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH)

Jonah Odim, MD, PhD, MBA is a member of the following medical societies: American College of Cardiology, American College of Chest Physicians, American Association for Physician Leadership, American College of Surgeons, American Heart Association, American Society for Artificial Internal Organs, American Society of Transplant Surgeons, Association for Academic Surgery, Association for Surgical Education, International Society for Heart and Lung Transplantation, National Medical Association, New York Academy of Sciences, Royal College of Physicians and Surgeons of Canada, Society of Critical Care Medicine, Society of Thoracic Surgeons, Canadian Cardiovascular Society

Disclosure: Nothing to disclose.

Additional Contributors

Daniel S Schwartz, MD, FACS Medical Director of Thoracic Oncology, St Catherine of Siena Medical Center, Catholic Health Services

Daniel S Schwartz, MD, FACS is a member of the following medical societies: Society of Thoracic Surgeons, Western Thoracic Surgical Association, American College of Chest Physicians, American College of Surgeons

Disclosure: Nothing to disclose.


Theodore C Koutlas, MD Assistant Professor, Department of Surgery, Division of Cardiothoracic Surgery, Pitt County Memorial Hospital

Theodore C Koutlas, MD is a member of the following medical societies: American College of Surgeons, Society of Thoracic Surgeons, and Southern Thoracic Surgical Association

Disclosure: Nothing to disclose.

Katie Love, MD Clinical Instructor, Department of Surgery, University of Louisville School of Medicine

Katie Love, MD is a member of the following medical societies: American College of Surgeons, Eastern Association for the Surgery of Trauma, and Society of Critical Care Medicine

Disclosure: Nothing to disclose.

David M Maziarz, MD Thoracic Surgeon, St Francis Cardiovascular & Thoracic Associates

David M Maziarz is a member of the following medical societies: American College of Surgeons

Disclosure: Nothing to disclose.

Clifton C Reade, MD Fellow, Department of Cardiothoracic Surgery, University of Pennsylvania School of Medicine

Clifton C Reade, MD is a member of the following medical societies: Alpha Omega Alpha, American College of Surgeons, Society of Thoracic Surgeons, and Southeastern Surgical Congress

Disclosure: Nothing to disclose.

  1. Luijendijk P, Boekholdt SM, Blom NA, Groenink M, Backx AP, Bouma BJ, et al. Percutaneous treatment of native aortic coarctation in adults. Neth Heart J. 2011 Oct. 19(10):436-9. [Medline]. [Full Text].

  2. Schreiber C, Mazzitelli D, Haehnel JC, et al. The interrupted aortic arch: an overview after 20 years of surgical treatment. Eur J Cardiothorac Surg. 1997 Sep. 12(3):466-9; discussion 469-70. [Medline].

  3. Celoria GC, Patton RB. Congenital absence of the aortic arch. Am Heart J. 1959. 58:408.

  4. Brown JW, Ruzmetov M, Okada Y, Vijay P, Rodefeld MD, Turrentine MW. Outcomes in patients with interrupted aortic arch and associated anomalies: a 20-year experience. Eur J Cardiothorac Surg. 2006 May. 29(5):666-73; discussion 673-4. [Medline].

  5. Liu JY, Jones B, Cheung MM, Galati JC, Koleff J, Konstantinov IE, et al. Favourable Anatomy After End-to-Side Repair of Interrupted Aortic Arch. Heart Lung Circ. 2013 Aug 30. [Medline].

  6. Miyamoto T, Yoshii T, Inui A, Ozaki S. Staged repair for aortic arch reconstruction and intracardiac repair following bilateral pulmonary artery banding in 3 critical patients. Interact Cardiovasc Thorac Surg. 2013 Jun. 16(6):892-4. [Medline]. [Full Text].

  7. Shen I, Ungerleider RM; Ohye RG, Suzuki T, Devaney EJ, Bove EL. Coarctation of the Aorta, Interrupted Aortic Arch Complex. Kaiser LR, Kron IL, Spray TL. Mastery of Cardiothoracic Surgery. Second. Philadelphia, PA: Lippincott, Williams and Wilkins; 2007. chap 78-79.

  8. Grech V. Diagnostic and surgical trends, and epidemiology of coarctation of the aorta in a population-based study. Int J Cardiol. 1999 Feb 28. 68(2):197-202. [Medline].

  9. Van Son JA, Mohr FW, Hess H, et al. Early repair of coarctation of the aorta. Ann Thorac Cardiovasc Surg. 1999 Aug. 5(4):237-44. [Medline].

  10. Moene RJ, Gittenberger-de Groot AC, Oppenheimer-Dekker A, Bartelings MM. Anatomic characteristics of ventricular septal defect associated with coarctation of the aorta. Am J Cardiol. 1987 Apr 15. 59(9):952-5. [Medline].

  11. Park JK, Dell RB, Ellis K, Gersony WM. Surgical management of the infant with coarctation of the aorta and ventricular septal defect. J Am Coll Cardiol. 1992 Jul. 20(1):176-80. [Medline].

  12. Parr GV, Waldhausen JA, Bharati S, et al. Coarctation in Taussig-Bing malformation of the heart. Surgical significance. J Thorac Cardiovasc Surg. 1983 Aug. 86(2):280-7. [Medline].

  13. Sadow SH, Synhorst DP, Pappas G. Taussig-Bing anomaly and coarctation of the aorta in infancy: surgical options. Pediatr Cardiol. 1985. 6(2):83-9. [Medline].

  14. Campbell M. Natural history of coarctation of the aorta. Br Heart J. 1970 Sep. 32(5):633-40. [Medline].

  15. Shearer WT, Rutman JY, Weinberg WA, Goldring D. Coarctation of the aorta and cerebrovascular accident: a proposal for early corrective surgery. J Pediatr. 1970 Dec. 77(6):1004-9. [Medline].

  16. Kpodonu J, Ramaiah VG, Diethrich EB. Intravascular ultrasound imaging as applied to the aorta: a new tool for the cardiovascular surgeon. Ann Thorac Surg. 2008 Oct. 86(4):1391-8. [Medline].

  17. Rudolph AM, Heymann MA, Spitznas U. Hemodynamic considerations in the development of narrowing of the aorta. Am J Cardiol. 1972 Oct. 30(5):514-25. [Medline].

  18. Jurcut R, Daraban AM, Lorber A, Deleanu D, Amzulescu MS, Zara C, et al. Coarctation of the aorta in adults: what is the best treatment? Case report and literature review. J Med Life. 2011 May 15. 4(2):189-95. [Medline]. [Full Text].

  19. Korkmaz AA, Guden M, Onan B, Tarakci SI, Demir AS, Sagbas E, et al. New technique for single-staged repair of aortic coarctation and coexisting cardiac disorder. Tex Heart Inst J. 2011. 38(4):404-8. [Medline]. [Full Text].

  20. Ungerleider RM, Ebert PA. Indications and techniques for midline approach to aortic coarctation in infants and children. Ann Thorac Surg. 1987 Nov. 44(5):517-22. [Medline].

  21. Alsoufi B, Cai S, Coles JG, Williams WG, Van Arsdell GS, Caldarone CA. Outcomes of different surgical strategies in the treatment of neonates with aortic coarctation and associated ventricular septal defects. Ann Thorac Surg. 2007 Oct. 84(4):1331-6; discussion 1336-7. [Medline].

  22. Kanter KR, Mahle WT, Kogon BE, Kirshbom PM. What is the optimal management of infants with coarctation and ventricular septal defect?. Ann Thorac Surg. 2007 Aug. 84(2):612-8; discussion 618. [Medline].

  23. Aebert H, Laas J, Bednarski P, et al. High incidence of aneurysm formation following patch plasty repair of coarctation. Eur J Cardiothorac Surg. 1993. 7(4):200-4; discussion 205. [Medline].

  24. Kawauchi M, Tada Y, Asano K, Sudo K. Angiographic demonstration of mesenteric arterial changes in postcoarctectomy syndrome. Surgery. 1985 Sep. 98(3):602-4. [Medline].

  25. Cunningham JN Jr, Laschinger JC, Spencer FC. Monitoring of somatosensory evoked potentials during surgical procedures on the thoracoabdominal aorta. IV. Clinical observations and results. J Thorac Cardiovasc Surg. 1987 Aug. 94(2):275-85. [Medline].

  26. Seirafi PA, Warner KG, Geggel RL, et al. Repair of coarctation of the aorta during infancy minimizes the risk of late hypertension. Ann Thorac Surg. 1998 Oct. 66(4):1378-82. [Medline].

  27. Backer CL, Mavroudis C, Zias EA, et al. Repair of coarctation with resection and extended end-to-end anastomosis. Ann Thorac Surg. 1998 Oct. 66(4):1365-70; discussion 1370-1. [Medline].

  28. Allen BS, Halldorsson AO, Barth MJ, Ilbawi MN. Modification of the subclavian patch aortoplasty for repair of aortic coarctation in neonates and infants. Ann Thorac Surg. 2000 Mar. 69(3):877-80; discussion 881. [Medline].

  29. Sciolaro C, Copeland J, Cork R, et al. Long-term follow-up comparing subclavian flap angioplasty to resection with modified oblique end-to-end anastomosis. J Thorac Cardiovasc Surg. 1991 Jan. 101(1):1-13. [Medline].

  30. Fiore AC, Fischer LK, Schwartz T, et al. Comparison of angioplasty and surgery for neonatal aortic coarctation. Ann Thorac Surg. 2005 Nov. 80(5):1659-64; discussion 1664-5. [Medline].

  31. Cowley CG, Orsmond GS, Feola P, et al. Long-term, randomized comparison of balloon angioplasty and surgery for native coarctation of the aorta in childhood. Circulation. 2005 Jun 28. 111(25):3453-6. [Medline].

  32. Karl TR. Surgery is the best treatment for primary coarctation in the majority of cases. J Cardiovasc Med (Hagerstown). 2007 Jan. 8(1):50-6. [Medline].

  33. Al-Ata J, Arfi AM, Hussain A, Kouatly A, Galal MO. Stent angioplasty: an effective alternative in selected infants with critical native aortic coarctation. Pediatr Cardiol. 2007 May-Jun. 28(3):183-92. [Medline].

  34. Marshall AC, Perry SB, Keane JF, Lock JE. Early results and medium-term follow-up of stent implantation for mild residual or recurrent aortic coarctation. Am Heart J. 2000 Jun. 139(6):1054-60. [Medline].

  35. Thanopoulos BD, Hadjinikolaou L, Konstadopoulou GN, et al. Stent treatment for coarctation of the aorta: intermediate term follow up and technical considerations. Heart. 2000 Jul. 84(1):65-70. [Medline].

  36. Kutty S, Greenberg RK, Fletcher S, Svensson LG, Latson LA. Endovascular stent grafts for large thoracic aneurysms after coarctation repair. Ann Thorac Surg. 2008 Apr. 85(4):1332-8. [Medline].

  37. Abbott ME. Coarctation of the aorta of the adult type. Am. Heart J. 1928. 3:574.

  38. Aeba R, Katogi T, Ueda T, et al. Complications following reparative surgery for aortic coarctation or interrupted aortic arch. Surg Today. 1998. 28(9):889-94. [Medline].

  39. Bogers AJ, Contant CM, Hokken RB, Cromme-Dijkhuis AH. Repair of aortic arch interruption by direct anastomosis. Eur J Cardiothorac Surg. 1997 Jan. 11(1):100-4. [Medline].

  40. DeLeon MM, DeLeon SY, Quinones JA, et al. Management of arch hypoplasia after successful coarctation repair. Ann Thorac Surg. 1997 Apr. 63(4):975-80. [Medline].

  41. Hirooka K, Fraser CD Jr. One-stage neonatal repair of complex aortic arch obstruction or interruption. Recent experience at Texas Children''s Hospital. Tex Heart Inst J. 1997. 24(4):317-21. [Medline]. [Full Text].

  42. Jahangiri M, Shinebourne EA, Zurakowski D, et al. Subclavian flap angioplasty: does the arch look after itself?. J Thorac Cardiovasc Surg. 2000 Aug. 120(2):224-9. [Medline].

  43. Jenkins NP, Ward C. Coarctation of the aorta: natural history and outcome after surgical treatment. QJM. 1999 Jul. 92(7):365-71. [Medline].

  44. Jimenez M, Daret D, Choussat A, Bonnet J. Immunohistological and ultrastructural analysis of the intimal thickening in coarctation of human aorta. Cardiovasc Res. 1999 Mar. 41(3):737-45. [Medline].

  45. Mainwaring RD, Lamberti JJ. Mid- to long-term results of the two-stage approach for type B interrupted aortic arch and ventricular septal defect. Ann Thorac Surg. 1997 Dec. 64(6):1782-5; discussion 1785-6. [Medline].

  46. O'Connor AR, Moody AR, Ludman CN. Images in cardiology. Aortic coarctation diagnosed by magnetic resonance angiography. Heart. 1999 Jun. 81(6):671. [Medline].

  47. Ovaert C, McCrindle BW, Nykanen D, et al. Balloon angioplasty of native coarctation: clinical outcomes and predictors of success. J Am Coll Cardiol. 2000 Mar 15. 35(4):988-96. [Medline].

  48. Reifenstein GH, Levine SA, Gross RE. Coarctation of the aorta: a review of 104 autopsied cases of the "adult type" 2 years of age or older. Am Heart J. 1947. 33:146.

  49. Rothman A. Coarctation of the aorta: an update. Curr Probl Pediatr. 1998 Feb. 28(2):33-60. [Medline].

  50. Saba SE, Nimri M, Shamaileh Q, et al. Balloon coarctation angioplasty: follow-up of 103 patients. J Invasive Cardiol. 2000 Aug. 12(8):402-6. [Medline].

  51. Sakopoulos AG, Hahn TL, Turrentine M, Brown JW. Recurrent aortic coarctation: is surgical repair still the gold standard?. J Thorac Cardiovasc Surg. 1998 Oct. 116(4):560-5. [Medline].

  52. Thanopoulos BV, Eleftherakis N, Tzanos K, Skoularigis I, Triposkiadis F. Stent implantation for adult aortic coarctation. J Am Coll Cardiol. 2008 Nov 25. 52(22):1815-6. [Medline].

  53. Tlaskal T, Hucin B, Hruda J, et al. Results of primary and two-stage repair of interrupted aortic arch. Eur J Cardiothorac Surg. 1998 Sep. 14(3):235-42. [Medline].

  54. Vitullo DA, DeLeon SY, Graham LC, et al. Extended end-to-end repair and enlargement of the entire arch in complex coarctation. Ann Thorac Surg. 1999 Feb. 67(2):528-31. [Medline].

  55. Wong CH, Watson B, Smith J. The use of left heart bypass in adult and recurrent coarctation repair. Eur J Cardiothorac Surg. 2001 Dec. 20(6):1199-201. [Medline].

  56. Wood MK. Acyanotic cardiac lesions with normal pulmonary blood flow. Neonatal Netw. 1998 Apr. 17(3):5-11. [Medline].

Aortic coarctation visualized by aortic angiography.
Aortic coarctation visualized by MRI.
All material on this website is protected by copyright, Copyright © 1994-2016 by WebMD LLC. This website also contains material copyrighted by 3rd parties.