Close
New

Medscape is available in 5 Language Editions – Choose your Edition here.

 

Surgical Approach to Coarctation of the Aorta and Interrupted Aortic Arch Workup

  • Author: Dale K Mueller, MD; Chief Editor: Jonah Odim, MD, PhD, MBA  more...
 
Updated: Mar 30, 2015
 

Laboratory Studies

Arterial blood gas

ABG analysis may be ordered to look for acidosis, which is common in severe coarctation in a newborn. The results of ABG analysis are nonspecific.

Electrocardiography

Another nonspecific but noninvasive examination, ECG may reflect signs of right, left, or biventricular hypertrophy, or they findings may be entirely normal in older children and adults.

Left ventricular hypertrophy with strain is a common late finding in severe coarctation.

Next

Imaging Studies

Chest radiography

Chest radiography may reveal little more than left ventricular hypertrophy in a mild case of coarctation. However, several other findings are considered pathognomonic of coarctation.

The classic sign of rib notching, which Meckel first described in 1827. This sign may be clearly evident on posteroanterior radiographs. The notching, a result of dilated intercostal arteries eroding the lower edge of the rib, may be absent in older patients who have not developed collaterals. It is usually absent in young patients (usually < 5-6 y) who have not had time to develop clinically significant collaterals.

The reverse-3 sign is another classic radiologic finding in coarctation. Observed en face, the upper part of the 3 is formed by the dilated proximal segment coming down into the coarcted segment, whereas the bottom portion of the 3 is formed by the coarcted segment exiting into the normal distal segment of the aorta.

Chest computed tomography scanning

CT scanning of the chest may be useful in evaluating complex abnormalities and in making the diagnosis in adults.

Angiography

Angiography was considered the criterion standard. However, CT and MRI have replaced angiography as their resolution has improved. See the image below.

Aortic coarctation visualized by aortic angiograph Aortic coarctation visualized by aortic angiography.

Magnetic resonance imaging

MRI is similar to CT scanning in that it is most helpful in assessing complex abnormalities. The resolution of MRI is better than that of CT scanning; however, the long exposure times necessary for MRI make it a more difficult to perform in infants than a 30-second rapid spiral chest CT scan. See the image below.

Aortic coarctation visualized by MRI. Aortic coarctation visualized by MRI.

The risks associated with the sedation necessary for adequate imaging likely outweigh any additional benefit.

Echocardiography

Echocardiography has gained favor in relatively recent years because its resolution has dramatically increased and its processing power has been improved.

Two-dimensional echocardiography can demonstrate the site of coarctation and helps in evaluating for other cardiac anomalies. Color Doppler flow can suggest the magnitude of pressure gradients.

Because of its portability, accuracy, and noninvasive nature, echocardiography is the diagnostic test of choice in neonates. Neonates seldom require angiographic study, except in rare cases when the area cannot be visualized well and when the abnormality cannot be effectively ruled out.

Advances in transesophageal echocardiography have made it the diagnostic test of choice during surgery, and it provides an excellent noninvasive means for postoperative follow-up care.

The most important disadvantage of echocardiography is a consequence of its noninvasive nature. Because the pressure gradients are not measured directly, they may not be as accurate as angiographically determined gradients.

Intravascular ultrasonography

IVUS is an imaging technique recently used in the diagnosis and treatment of coarctation. Capabilities include measurement of the diameter of the aorta, coarctation, and length of the lesion. This information guides the selection and deployment of stents. It also provides a means by which the endovascular repair can be followed.[16]

Previous
Next

Diagnostic Procedures

Cardiac catheterization

This invasive examination is not typically considered necessary because coarctation rarely involves the coronary arteries. Patients with coarctation are at risk for coronary disease later in life because of the latent effects of hypertension; therefore, cardiac catheterization may be useful in a patient examined for recoarctation at an older age.

Angiography and aortography

Considered the most objective method of analysis, angiography and aortography have many benefits; however, less invasive diagnostic techniques have largely replaced these studies.

Angiography and aortography reflect the location and extent of the coarctation, it delineates any great-vessel involvement, it facilitates the evaluation of any associated cardiac defects, and it allows for the direct measurement of pressure gradients.

Angiography and aortography are particularly useful in evaluating recurrent coarctation because balloon angioplasty can be performed at the time of the procedure if necessary.

Previous
Next

Histologic Findings

Ductal tissue stains lighter than aortic tissue because of its low elastin levels. In a normal aorta, the inner one third of the elastic lamellae of the aorta merges into the internal elastic lamina of the ductus, whereas the outer two thirds should merge into the adventitia.

In coarctation, ductal tissue often encircles the lumen of the aorta. As the ductus attempts to close soon after birth, ductal tissue encroaching on the aorta constricts as well, narrowing the aortic lumen.

This ectopic tissue growth is not present in all patients. This observation led to the proposal that coarctation is not a result of abnormal tissue growth, but rather, a result of abnormal fetal blood-flow patterns.[17]

Previous
 
 
Contributor Information and Disclosures
Author

Dale K Mueller, MD Co-Medical Director of Thoracic Center of Excellence, Chairman, Department of Cardiovascular Medicine and Surgery, OSF Saint Francis Medical Center; Cardiovascular and Thoracic Surgeon, HeartCare Midwest, Ltd, A Subsidiary of OSF Saint Francis Medical Center; Section Chief, Department of Surgery, University of Illinois at Peoria College of Medicine

Dale K Mueller, MD is a member of the following medical societies: American College of Chest Physicians, American College of Surgeons, American Medical Association, Chicago Medical Society, Illinois State Medical Society, International Society for Heart and Lung Transplantation, Society of Thoracic Surgeons, Rush Surgical Society

Disclosure: Received consulting fee from Provation Medical for writing.

Specialty Editor Board

Mary L Windle, PharmD Adjunct Associate Professor, University of Nebraska Medical Center College of Pharmacy; Editor-in-Chief, Medscape Drug Reference

Disclosure: Nothing to disclose.

Mary C Mancini, MD, PhD, MMM Professor and Chief of Cardiothoracic Surgery, Department of Surgery, Louisiana State University School of Medicine in Shreveport

Mary C Mancini, MD, PhD, MMM is a member of the following medical societies: American Association for Thoracic Surgery, American College of Surgeons, American Surgical Association, Society of Thoracic Surgeons, Phi Beta Kappa

Disclosure: Nothing to disclose.

Chief Editor

Jonah Odim, MD, PhD, MBA Section Chief of Clinical Transplantation, Transplantation Branch, Division of Allergy, Immunology, and Transplantation, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH)

Jonah Odim, MD, PhD, MBA is a member of the following medical societies: American College of Cardiology, American College of Chest Physicians, American Association for Physician Leadership, American College of Surgeons, American Heart Association, American Society for Artificial Internal Organs, American Society of Transplant Surgeons, Association for Academic Surgery, Association for Surgical Education, International Society for Heart and Lung Transplantation, National Medical Association, New York Academy of Sciences, Royal College of Physicians and Surgeons of Canada, Society of Critical Care Medicine, Society of Thoracic Surgeons, Canadian Cardiovascular Society

Disclosure: Nothing to disclose.

Additional Contributors

Daniel S Schwartz, MD, FACS Medical Director of Thoracic Oncology, St Catherine of Siena Medical Center, Catholic Health Services

Daniel S Schwartz, MD, FACS is a member of the following medical societies: Society of Thoracic Surgeons, Western Thoracic Surgical Association, American College of Chest Physicians, American College of Surgeons

Disclosure: Nothing to disclose.

Acknowledgements

Theodore C Koutlas, MD Assistant Professor, Department of Surgery, Division of Cardiothoracic Surgery, Pitt County Memorial Hospital

Theodore C Koutlas, MD is a member of the following medical societies: American College of Surgeons, Society of Thoracic Surgeons, and Southern Thoracic Surgical Association

Disclosure: Nothing to disclose.

Katie Love, MD Clinical Instructor, Department of Surgery, University of Louisville School of Medicine

Katie Love, MD is a member of the following medical societies: American College of Surgeons, Eastern Association for the Surgery of Trauma, and Society of Critical Care Medicine

Disclosure: Nothing to disclose.

David M Maziarz, MD Thoracic Surgeon, St Francis Cardiovascular & Thoracic Associates

David M Maziarz is a member of the following medical societies: American College of Surgeons

Disclosure: Nothing to disclose.

Clifton C Reade, MD Fellow, Department of Cardiothoracic Surgery, University of Pennsylvania School of Medicine

Clifton C Reade, MD is a member of the following medical societies: Alpha Omega Alpha, American College of Surgeons, Society of Thoracic Surgeons, and Southeastern Surgical Congress

Disclosure: Nothing to disclose.

References
  1. Luijendijk P, Boekholdt SM, Blom NA, Groenink M, Backx AP, Bouma BJ, et al. Percutaneous treatment of native aortic coarctation in adults. Neth Heart J. 2011 Oct. 19(10):436-9. [Medline]. [Full Text].

  2. Schreiber C, Mazzitelli D, Haehnel JC, et al. The interrupted aortic arch: an overview after 20 years of surgical treatment. Eur J Cardiothorac Surg. 1997 Sep. 12(3):466-9; discussion 469-70. [Medline].

  3. Celoria GC, Patton RB. Congenital absence of the aortic arch. Am Heart J. 1959. 58:408.

  4. Brown JW, Ruzmetov M, Okada Y, Vijay P, Rodefeld MD, Turrentine MW. Outcomes in patients with interrupted aortic arch and associated anomalies: a 20-year experience. Eur J Cardiothorac Surg. 2006 May. 29(5):666-73; discussion 673-4. [Medline].

  5. Liu JY, Jones B, Cheung MM, Galati JC, Koleff J, Konstantinov IE, et al. Favourable Anatomy After End-to-Side Repair of Interrupted Aortic Arch. Heart Lung Circ. 2013 Aug 30. [Medline].

  6. Miyamoto T, Yoshii T, Inui A, Ozaki S. Staged repair for aortic arch reconstruction and intracardiac repair following bilateral pulmonary artery banding in 3 critical patients. Interact Cardiovasc Thorac Surg. 2013 Jun. 16(6):892-4. [Medline]. [Full Text].

  7. Shen I, Ungerleider RM; Ohye RG, Suzuki T, Devaney EJ, Bove EL. Coarctation of the Aorta, Interrupted Aortic Arch Complex. Kaiser LR, Kron IL, Spray TL. Mastery of Cardiothoracic Surgery. Second. Philadelphia, PA: Lippincott, Williams and Wilkins; 2007. chap 78-79.

  8. Grech V. Diagnostic and surgical trends, and epidemiology of coarctation of the aorta in a population-based study. Int J Cardiol. 1999 Feb 28. 68(2):197-202. [Medline].

  9. Van Son JA, Mohr FW, Hess H, et al. Early repair of coarctation of the aorta. Ann Thorac Cardiovasc Surg. 1999 Aug. 5(4):237-44. [Medline].

  10. Moene RJ, Gittenberger-de Groot AC, Oppenheimer-Dekker A, Bartelings MM. Anatomic characteristics of ventricular septal defect associated with coarctation of the aorta. Am J Cardiol. 1987 Apr 15. 59(9):952-5. [Medline].

  11. Park JK, Dell RB, Ellis K, Gersony WM. Surgical management of the infant with coarctation of the aorta and ventricular septal defect. J Am Coll Cardiol. 1992 Jul. 20(1):176-80. [Medline].

  12. Parr GV, Waldhausen JA, Bharati S, et al. Coarctation in Taussig-Bing malformation of the heart. Surgical significance. J Thorac Cardiovasc Surg. 1983 Aug. 86(2):280-7. [Medline].

  13. Sadow SH, Synhorst DP, Pappas G. Taussig-Bing anomaly and coarctation of the aorta in infancy: surgical options. Pediatr Cardiol. 1985. 6(2):83-9. [Medline].

  14. Campbell M. Natural history of coarctation of the aorta. Br Heart J. 1970 Sep. 32(5):633-40. [Medline].

  15. Shearer WT, Rutman JY, Weinberg WA, Goldring D. Coarctation of the aorta and cerebrovascular accident: a proposal for early corrective surgery. J Pediatr. 1970 Dec. 77(6):1004-9. [Medline].

  16. Kpodonu J, Ramaiah VG, Diethrich EB. Intravascular ultrasound imaging as applied to the aorta: a new tool for the cardiovascular surgeon. Ann Thorac Surg. 2008 Oct. 86(4):1391-8. [Medline].

  17. Rudolph AM, Heymann MA, Spitznas U. Hemodynamic considerations in the development of narrowing of the aorta. Am J Cardiol. 1972 Oct. 30(5):514-25. [Medline].

  18. Jurcut R, Daraban AM, Lorber A, Deleanu D, Amzulescu MS, Zara C, et al. Coarctation of the aorta in adults: what is the best treatment? Case report and literature review. J Med Life. 2011 May 15. 4(2):189-95. [Medline]. [Full Text].

  19. Korkmaz AA, Guden M, Onan B, Tarakci SI, Demir AS, Sagbas E, et al. New technique for single-staged repair of aortic coarctation and coexisting cardiac disorder. Tex Heart Inst J. 2011. 38(4):404-8. [Medline]. [Full Text].

  20. Ungerleider RM, Ebert PA. Indications and techniques for midline approach to aortic coarctation in infants and children. Ann Thorac Surg. 1987 Nov. 44(5):517-22. [Medline].

  21. Alsoufi B, Cai S, Coles JG, Williams WG, Van Arsdell GS, Caldarone CA. Outcomes of different surgical strategies in the treatment of neonates with aortic coarctation and associated ventricular septal defects. Ann Thorac Surg. 2007 Oct. 84(4):1331-6; discussion 1336-7. [Medline].

  22. Kanter KR, Mahle WT, Kogon BE, Kirshbom PM. What is the optimal management of infants with coarctation and ventricular septal defect?. Ann Thorac Surg. 2007 Aug. 84(2):612-8; discussion 618. [Medline].

  23. Aebert H, Laas J, Bednarski P, et al. High incidence of aneurysm formation following patch plasty repair of coarctation. Eur J Cardiothorac Surg. 1993. 7(4):200-4; discussion 205. [Medline].

  24. Kawauchi M, Tada Y, Asano K, Sudo K. Angiographic demonstration of mesenteric arterial changes in postcoarctectomy syndrome. Surgery. 1985 Sep. 98(3):602-4. [Medline].

  25. Cunningham JN Jr, Laschinger JC, Spencer FC. Monitoring of somatosensory evoked potentials during surgical procedures on the thoracoabdominal aorta. IV. Clinical observations and results. J Thorac Cardiovasc Surg. 1987 Aug. 94(2):275-85. [Medline].

  26. Seirafi PA, Warner KG, Geggel RL, et al. Repair of coarctation of the aorta during infancy minimizes the risk of late hypertension. Ann Thorac Surg. 1998 Oct. 66(4):1378-82. [Medline].

  27. Backer CL, Mavroudis C, Zias EA, et al. Repair of coarctation with resection and extended end-to-end anastomosis. Ann Thorac Surg. 1998 Oct. 66(4):1365-70; discussion 1370-1. [Medline].

  28. Allen BS, Halldorsson AO, Barth MJ, Ilbawi MN. Modification of the subclavian patch aortoplasty for repair of aortic coarctation in neonates and infants. Ann Thorac Surg. 2000 Mar. 69(3):877-80; discussion 881. [Medline].

  29. Sciolaro C, Copeland J, Cork R, et al. Long-term follow-up comparing subclavian flap angioplasty to resection with modified oblique end-to-end anastomosis. J Thorac Cardiovasc Surg. 1991 Jan. 101(1):1-13. [Medline].

  30. Fiore AC, Fischer LK, Schwartz T, et al. Comparison of angioplasty and surgery for neonatal aortic coarctation. Ann Thorac Surg. 2005 Nov. 80(5):1659-64; discussion 1664-5. [Medline].

  31. Cowley CG, Orsmond GS, Feola P, et al. Long-term, randomized comparison of balloon angioplasty and surgery for native coarctation of the aorta in childhood. Circulation. 2005 Jun 28. 111(25):3453-6. [Medline].

  32. Karl TR. Surgery is the best treatment for primary coarctation in the majority of cases. J Cardiovasc Med (Hagerstown). 2007 Jan. 8(1):50-6. [Medline].

  33. Al-Ata J, Arfi AM, Hussain A, Kouatly A, Galal MO. Stent angioplasty: an effective alternative in selected infants with critical native aortic coarctation. Pediatr Cardiol. 2007 May-Jun. 28(3):183-92. [Medline].

  34. Marshall AC, Perry SB, Keane JF, Lock JE. Early results and medium-term follow-up of stent implantation for mild residual or recurrent aortic coarctation. Am Heart J. 2000 Jun. 139(6):1054-60. [Medline].

  35. Thanopoulos BD, Hadjinikolaou L, Konstadopoulou GN, et al. Stent treatment for coarctation of the aorta: intermediate term follow up and technical considerations. Heart. 2000 Jul. 84(1):65-70. [Medline].

  36. Kutty S, Greenberg RK, Fletcher S, Svensson LG, Latson LA. Endovascular stent grafts for large thoracic aneurysms after coarctation repair. Ann Thorac Surg. 2008 Apr. 85(4):1332-8. [Medline].

  37. Abbott ME. Coarctation of the aorta of the adult type. Am. Heart J. 1928. 3:574.

  38. Aeba R, Katogi T, Ueda T, et al. Complications following reparative surgery for aortic coarctation or interrupted aortic arch. Surg Today. 1998. 28(9):889-94. [Medline].

  39. Bogers AJ, Contant CM, Hokken RB, Cromme-Dijkhuis AH. Repair of aortic arch interruption by direct anastomosis. Eur J Cardiothorac Surg. 1997 Jan. 11(1):100-4. [Medline].

  40. DeLeon MM, DeLeon SY, Quinones JA, et al. Management of arch hypoplasia after successful coarctation repair. Ann Thorac Surg. 1997 Apr. 63(4):975-80. [Medline].

  41. Hirooka K, Fraser CD Jr. One-stage neonatal repair of complex aortic arch obstruction or interruption. Recent experience at Texas Children''s Hospital. Tex Heart Inst J. 1997. 24(4):317-21. [Medline]. [Full Text].

  42. Jahangiri M, Shinebourne EA, Zurakowski D, et al. Subclavian flap angioplasty: does the arch look after itself?. J Thorac Cardiovasc Surg. 2000 Aug. 120(2):224-9. [Medline].

  43. Jenkins NP, Ward C. Coarctation of the aorta: natural history and outcome after surgical treatment. QJM. 1999 Jul. 92(7):365-71. [Medline].

  44. Jimenez M, Daret D, Choussat A, Bonnet J. Immunohistological and ultrastructural analysis of the intimal thickening in coarctation of human aorta. Cardiovasc Res. 1999 Mar. 41(3):737-45. [Medline].

  45. Mainwaring RD, Lamberti JJ. Mid- to long-term results of the two-stage approach for type B interrupted aortic arch and ventricular septal defect. Ann Thorac Surg. 1997 Dec. 64(6):1782-5; discussion 1785-6. [Medline].

  46. O'Connor AR, Moody AR, Ludman CN. Images in cardiology. Aortic coarctation diagnosed by magnetic resonance angiography. Heart. 1999 Jun. 81(6):671. [Medline].

  47. Ovaert C, McCrindle BW, Nykanen D, et al. Balloon angioplasty of native coarctation: clinical outcomes and predictors of success. J Am Coll Cardiol. 2000 Mar 15. 35(4):988-96. [Medline].

  48. Reifenstein GH, Levine SA, Gross RE. Coarctation of the aorta: a review of 104 autopsied cases of the "adult type" 2 years of age or older. Am Heart J. 1947. 33:146.

  49. Rothman A. Coarctation of the aorta: an update. Curr Probl Pediatr. 1998 Feb. 28(2):33-60. [Medline].

  50. Saba SE, Nimri M, Shamaileh Q, et al. Balloon coarctation angioplasty: follow-up of 103 patients. J Invasive Cardiol. 2000 Aug. 12(8):402-6. [Medline].

  51. Sakopoulos AG, Hahn TL, Turrentine M, Brown JW. Recurrent aortic coarctation: is surgical repair still the gold standard?. J Thorac Cardiovasc Surg. 1998 Oct. 116(4):560-5. [Medline].

  52. Thanopoulos BV, Eleftherakis N, Tzanos K, Skoularigis I, Triposkiadis F. Stent implantation for adult aortic coarctation. J Am Coll Cardiol. 2008 Nov 25. 52(22):1815-6. [Medline].

  53. Tlaskal T, Hucin B, Hruda J, et al. Results of primary and two-stage repair of interrupted aortic arch. Eur J Cardiothorac Surg. 1998 Sep. 14(3):235-42. [Medline].

  54. Vitullo DA, DeLeon SY, Graham LC, et al. Extended end-to-end repair and enlargement of the entire arch in complex coarctation. Ann Thorac Surg. 1999 Feb. 67(2):528-31. [Medline].

  55. Wong CH, Watson B, Smith J. The use of left heart bypass in adult and recurrent coarctation repair. Eur J Cardiothorac Surg. 2001 Dec. 20(6):1199-201. [Medline].

  56. Wood MK. Acyanotic cardiac lesions with normal pulmonary blood flow. Neonatal Netw. 1998 Apr. 17(3):5-11. [Medline].

 
Previous
Next
 
Aortic coarctation visualized by aortic angiography.
Aortic coarctation visualized by MRI.
 
 
 
All material on this website is protected by copyright, Copyright © 1994-2016 by WebMD LLC. This website also contains material copyrighted by 3rd parties.