Close
New

Medscape is available in 5 Language Editions – Choose your Edition here.

 

Pediatric Atopic Dermatitis

  • Author: Robert A Schwartz, MD, MPH; Chief Editor: Dirk M Elston, MD  more...
 
Updated: May 24, 2016
 

Background

Atopic dermatitis (AD) is a chronically relapsing skin disorder with an immunologic basis.[1] The clinical presentation varies from mild to severe. In the worst cases, atopic dermatitis may interfere with normal growth and development. Treatment consists of adequate skin hydration, avoidance of allergenic precipitants, topical anti-inflammatory medications, systemic antihistamines, and antibiotic coverage of secondary infections.

Although often used interchangeably, the terms eczema and atopic dermatitis are not equivalent. Eczema is a reaction pattern with various causes and the most common pediatric cause is atopic dermatitis. Other causes of eczematous dermatitis include allergic contact dermatitis, irritant contact dermatitis, seborrheic dermatitis, nummular eczema, dyshidrotic eczema, asteatotic eczema, and lichen simplex chronicus. Eczematous reactions can be classified as acute, subacute, or chronic, depending on historical and physical characteristics.

The images below depict patients with atopic dermatitis.

Typical atopic dermatitis on the face of an infant Typical atopic dermatitis on the face of an infant.
Flexural involvement in childhood atopic dermatiti Flexural involvement in childhood atopic dermatitis.
Next

Pathophysiology

Clinically unaffected skin in patients with atopic dermatitis has increased numbers of T-helper type 2 (Th2) cells compared with skin in patients without atopic dermatitis. Increased levels of interleukin (IL)-4 and IL-13 (Th2 cytokines) are seen in acute atopic dermatitis skin lesions, whereas chronic atopic dermatitis lesions show increased expression of IL-5 (Th2 cytokine) and IL-12 and interferon (IFN)-γ (Th1 cytokines). Chronic atopic dermatitis lesions also exhibit greater eosinophil infiltration compared with skin in patients without atopic dermatitis.

IL-4 enhances differentiation of T-helper cells along the Th2 pathway, and IL-13 acts as a chemoattractant for Th2 cells to infiltrate atopic dermatitis lesions. IL-13 may also directly induce IL-5 expression and eosinophil infiltration, thereby facilitating the transition from acute lesions into chronic lesions.[2]

In addition, patients with atopic dermatitis appear to have significantly decreased levels of skin barrier molecules compared with normal controls. Ceramide lipids in the stratum corneum, which are responsible for water retention and permeability functions, and skin barrier proteins such as filaggrin are expressed at significantly lower levels in the skin of patients with atopic dermatitis compared with the skin of patients without atopic dermatitis.[2, 3]

Significant evidence favors the hygiene hypothesis for the development of atopic dermatitis. An inverse relationship is recognized between helminth infections and atopic dermatitis but no other pathogens.[4] In addition, early day care, endotoxin, unpasteurized farm milk, and animal exposure appear to be beneficial, likely because of a general increase in exposure to nonpathogenic microbes.

Positive association was shown between maternal exposure to increased concentrations of particulate matter and atopic dermatitis.[5]

Previous
Next

Epidemiology

Frequency

United States

Atopic dermatitis occurs in approximately 10-20% of children and 2% of adults.[2] Children with concurrent asthma or hayfever have a 30-50% incidence of developing atopic dermatitis.

International

Prevalence rates for atopic dermatitis in children over a 1-year period ranged from around 2% in Iran and China to about 20% in Australasia, England, and Scandinavia.[6] Interestingly, populations that migrate from areas of low prevalence to areas of higher prevalence have shown an increased incidence of atopic dermatitis, bolstering the idea of strong environmental influences in the development of atopic dermatitis.

Race

No clear racial predilections have been identified.

Sex

Males and females are affected with equal incidence and severity.

Age

Atopic dermatitis may occur in people of any age but often starts in infants aged 2-6 months. Ninety percent of patients with atopic dermatitis experience the onset of disease prior to age 5 years.[7] Seventy-five percent of individuals experience marked improvement in the severity of their atopic dermatitis by age 14 years; however, the remaining 25% continue to have significant relapses during their adult life. A recent study concluded that the prevalence of atopic dermatitis in children younger than 2 years was 18.6%.[8]

Previous
Next

Prognosis

Atopic dermatitis persists into adulthood in 20-40% of children with the condition. Many children outgrow severe atopic dermatitis and only experience itchy or inflamed skin if exposed to exogenous irritants as adults.

Previous
Next

Patient Education

For excellent patient education resources, visit eMedicineHealth's Skin Conditions and Beauty Center. Also, see eMedicineHealth's patient education article Eczema.

Previous
 
 
Contributor Information and Disclosures
Author

Robert A Schwartz, MD, MPH Professor and Head of Dermatology, Professor of Pathology, Pediatrics, Medicine, and Preventive Medicine and Community Health, Rutgers New Jersey Medical School; Visiting Professor, Rutgers University School of Public Affairs and Administration

Robert A Schwartz, MD, MPH is a member of the following medical societies: Alpha Omega Alpha, New York Academy of Medicine, American Academy of Dermatology, American College of Physicians, Sigma Xi

Disclosure: Nothing to disclose.

Specialty Editor Board

Mary L Windle, PharmD Adjunct Associate Professor, University of Nebraska Medical Center College of Pharmacy; Editor-in-Chief, Medscape Drug Reference

Disclosure: Nothing to disclose.

Robert A Schwartz, MD, MPH Professor and Head of Dermatology, Professor of Pathology, Pediatrics, Medicine, and Preventive Medicine and Community Health, Rutgers New Jersey Medical School; Visiting Professor, Rutgers University School of Public Affairs and Administration

Robert A Schwartz, MD, MPH is a member of the following medical societies: Alpha Omega Alpha, New York Academy of Medicine, American Academy of Dermatology, American College of Physicians, Sigma Xi

Disclosure: Nothing to disclose.

Chief Editor

Dirk M Elston, MD Professor and Chairman, Department of Dermatology and Dermatologic Surgery, Medical University of South Carolina College of Medicine

Dirk M Elston, MD is a member of the following medical societies: American Academy of Dermatology

Disclosure: Nothing to disclose.

Additional Contributors

Kevin P Connelly, DO Clinical Assistant Professor, Department of Pediatrics, Division of General Pediatrics and Emergency Care, Virginia Commonwealth University School of Medicine; Medical Director, Paws for Health Pet Visitation Program of the Richmond SPCA; Pediatric Emergency Physician, Emergency Consultants Inc, Chippenham Medical Center

Kevin P Connelly, DO is a member of the following medical societies: American Academy of Pediatrics, American College of Osteopathic Pediatricians, American Osteopathic Association

Disclosure: Nothing to disclose.

Acknowledgements

The authors and editors of Medscape Reference gratefully acknowledge the contributions of previous author, Caroline C Spagnola, MD, to the development and writing of this article.

References
  1. Turner JD, Schwartz RA. Atopic dermatitis. A clinical challenge. Acta Dermatovenerol Alp Panonica Adriat. 2006 Jun. 15(2):59-68. [Medline].

  2. Ong PY, Leung DY. Immune dysregulation in atopic dermatitis. Curr Allergy Asthma Rep. 2006 Sep. 6(5):384-9. [Medline].

  3. Oranje AP, Devillers AC, Kunz B, et al. Treatment of patients with atopic dermatitis using wet-wrap dressings with diluted steroids and/or emollients. An expert panel's opinion and review of the literature. J Eur Acad Dermatol Venereol. 2006 Nov. 20(10):1277-86. [Medline].

  4. Flohr C, Yeo L. Atopic dermatitis and the hygiene hypothesis revisited. Curr Probl Dermatol. 2011. 41:1-34. [Medline].

  5. Stelmach I, Bobrowska-Korzeniowska M, Smejda K, Majak P, Jerzynska J, Stelmach W, et al. Risk factors for the development of atopic dermatitis and early wheeze. Allergy Asthma Proc. 2014 Sep. 35(5):382-389. [Medline].

  6. Williams H, Stewart A, von Mutius E, Cookson W, Anderson HR,. Is eczema really on the increase worldwide?. J Allergy Clin Immunol. 2008 Apr. 121(4):947-54.e15. [Medline].

  7. Ong PY, Boguniewicz M. Atopic dermatitis. Prim Care. 2008 Mar. 35(1):105-17, vii. [Medline].

  8. Kvenshagen B, Jacobsen M, Halvorsen R. Atopic dermatitis in premature and term children. Arch Dis Child. 2009 Mar. 94(3):202-5. [Medline].

  9. Hanifin JM, Rajka G. Diagnostic features of atopic dermatitis. Acta Derm Venreol. 1980. 92:44-7.

  10. Mrabet-Dahbi S, Maurer M. Innate immunity in atopic dermatitis. Curr Probl Dermatol. 2011. 41:104-11. [Medline].

  11. Lee R, Schwartz RA. Pediatric molluscum contagiosum: reflections on the last challenging poxvirus infection, Part 2. Cutis. 2010 Dec. 86(6):287-92. [Medline].

  12. Lee R, Schwartz RA. Pediatric molluscum contagiosum: reflections on the last challenging poxvirus infection, Part 1. Cutis. 2010 Nov. 86(5):230-6. [Medline].

  13. Glazenburg EJ, Mulder PG, Oranje AP. A statistical model to predict the reduction of lichenification in atopic dermatitis. Acta Derm Venereol. 2015 Mar. 95 (3):294-7. [Medline].

  14. Oranje AP. Practical Issues on Interpretation of Scoring Atopic Dermatitis: SCORAD Index, Objective SCORAD, Patient-Oriented SCORAD and Three-Item Severity Score. Curr Probl Dermatol. 2011. 41:149-55. [Medline].

  15. van Oosterhout M, Janmohamed SR, Spierings M, Hiddinga J, de Waard-van der Spek FB, Oranje AP. Correlation between Objective SCORAD and Three-Item Severity Score used by physicians and Objective PO-SCORAD used by parents/patients in children with atopic dermatitis. Dermatology. 2015. 230 (2):105-12. [Medline].

  16. Bisgaard H, Halkjaer LB, Hinge R, et al. Risk analysis of early childhood eczema. J Allergy Clin Immunol. 2009 Jun. 123(6):1355-60.e5. [Medline].

  17. Leung DY. Our evolving understanding of the functional role of filaggrin in atopic dermatitis. J Allergy Clin Immunol. 2009 Sep. 124(3):494-5. [Medline].

  18. Gao PS, Rafaels NM, Hand T, et al. Filaggrin mutations that confer risk of atopic dermatitis confer greater risk for eczema herpeticum. J Allergy Clin Immunol. 2009 Sep. 124(3):507-13, 513.e1-7. [Medline].

  19. Kumar R, Ouyang F, Story RE, et al. Gestational diabetes, atopic dermatitis, and allergen sensitization in early childhood. J Allergy Clin Immunol. 2009 Nov. 124(5):1031-8.e1-4. [Medline].

  20. Silverberg JI, Kleiman E, Lev-Tov H, et al. Association between obesity and atopic dermatitis in childhood: A case-control study. J Allergy Clin Immunol. 2011 May. 127(5):1180-1186.e1. [Medline].

  21. Alzolibani AA, Al Robaee AA, Al Shobaili HA, Bilal JA, Issa Ahmad M, Bin Saif G. Documentation of vancomycin-resistant Staphylococcus aureus (VRSA) among children with atopic dermatitis in the Qassim region, Saudi Arabia. Acta Dermatovenerol Alp Panonica Adriat. 2012 Sep. 21(3):51-3. [Medline].

  22. Silverberg JI, Hanifin J, Simpson EL. Climatic factors are associated with childhood eczema prevalence in US. J Invest Dermatol. 2013 Jan 18. [Medline].

  23. Chamlin SL, Kao J, Frieden IJ, et al. Ceramide-dominant barrier repair lipids alleviate childhood atopic dermatitis: changes in barrier function provide a sensitive indicator of disease activity. J Am Acad Dermatol. 2002 Aug. 47(2):198-208. [Medline].

  24. Leloup P, Stalder JF, Barbarot S. Outpatient Home-based Wet Wrap Dressings with Topical Steroids with Children with Severe Recalcitrant Atopic Dermatitis: A Feasibility Pilot Study. Pediatr Dermatol. 2015 Apr 22. [Medline].

  25. Novak N. Allergen specific immunotherapy for atopic dermatitis. Curr Opin Allergy Clin Immunol. 2007 Dec. 7(6):542-46. [Medline].

  26. [Guideline] Greer FR, Sicherer SH, Burks AW. Effects of early nutritional interventions on the development of atopic disease in infants and children: the role of maternal dietary restriction, breastfeeding, timing of introduction of complementary foods, and hydrolyzed formulas. Pediatrics. 2008 Jan. 121(1):183-91. [Medline].

  27. Yang YW, Tsai CL, Lu CY. Exclusive breastfeeding and incident atopic dermatitis in childhood: a systematic review and meta-analysis of prospective cohort studies. Br J Dermatol. 2009 Aug. 161(2):373-83. [Medline].

  28. Miyake Y, Tanaka K, Sasaki S, et al. Breastfeeding and atopic eczema in Japanese infants: The Osaka Maternal and Child Health Study. Pediatric Allergy & Immunology. May 2009. 20:234-241. [Medline].

  29. Jin YY, Cao RM, Chen J, Kaku Y, Wu J, Cheng Y, et al. Partially hydrolyzed cow's milk formula has a therapeutic effect on the infants with mild to moderate atopic dermatitis: a randomized, double-blind study. Pediatr Allergy Immunol. 2011 May 4. [Medline].

  30. Arellano FM, Arana A, Wentworth CE, et al. Lymphoma among patients with atopic dermatitis and/or treated with topical immunosuppressants in the United Kingdom. J Allergy Clin Immunol. 2009 May. 123(5):1111-6, 116.e1-13. [Medline].

  31. Chang YS, Chou YT, Lee JH, Lee PL, Dai YS, Sun C, et al. Atopic dermatitis, melatonin, and sleep disturbance. Pediatrics. 2014 Aug. 134(2):e397-405. [Medline].

  32. Boguniewicz M. Topical treatment of atopic dermatitis. Immunol Allergy Clin North Am. 2004 Nov. 24(4):631-44, vi-vii. [Medline].

  33. Lee J, Seto D, Bielory L. Meta-analysis of clinical trials of probiotics for prevention and treatment of pediatric atopic dermatitis. J Allergy Clin Immunol. 2008 Jan. 121(1):116-121.e11. [Medline].

  34. Epstein TG, Bernstein DI, Levin L, Khurana Hershey GK, Ryan PH, Reponen T, et al. Opposing effects of cat and dog ownership and allergic sensitization on eczema in an atopic birth cohort. J Pediatr. 2011 Feb. 158(2):265-71.e1-5. [Medline].

  35. Thyssen JP, Godoy-Gijon E, Elias PM. Ichthyosis vulgaris - the filaggrin mutation disease. Br J Dermatol. 2013 Jan 10. [Medline].

  36. Blattner CM, Murase JE. A practice gap in pediatric dermatology: does breast-feeding prevent the development of infantile atopic dermatitis?. J Am Acad Dermatol. 2014 Aug. 71(2):405-6. [Medline].

  37. Broeders JA, Ahmed Ali U, Fischer G. Systematic review and meta-analysis of randomized clinical trials (RCTs) comparing topical calcineurin inhibitors with topical corticosteroids for atopic dermatitis: A 15-year experience. J Am Acad Dermatol. 2016 May 11. [Medline].

  38. Janmohamed SR, Oranje AP, Devillers AC, Rizopoulos D, van Praag MC, Van Gysel D, et al. The proactive wet-wrap method with diluted corticosteroids versus emollients in children with atopic dermatitis: a prospective, randomized, double-blind, placebo-controlled trial. J Am Acad Dermatol. 2014 Jun. 70(6):1076-82. [Medline].

  39. Jarnagin K, Chanda S, Coronado D, Ciaravino V, Zane LT, Guttman-Yassky E, et al. Crisaborole Topical Ointment, 2%: A Nonsteroidal, Topical, Anti-Inflammatory Phosphodiesterase 4 Inhibitor in Clinical Development for the Treatment of Atopic Dermatitis. J Drugs Dermatol. 2016 Apr 1. 15 (4):390-6. [Medline].

  40. Draelos ZD, Stein Gold LF, Murrell DF, Hughes MH, Zane LT. Post Hoc Analyses of the Effect of Crisaborole Topical Ointment, 2% on Atopic Dermatitis: Associated Pruritus from Phase 1 and 2 Clinical Studies. J Drugs Dermatol. 2016 Feb 1. 15 (2):172-6. [Medline].

  41. Paghdal KV, Schwartz RA. Topical tar: back to the future. J Am Acad Dermatol. 2009 Aug. 61(2):294-302. [Medline].

  42. Luger T, Boguniewicz M, Carr W, et al. Pimecrolimus in atopic dermatitis: Consensus on safety and the need to allow use in infants. Pediatr Allergy Immunol. 2015 Jun. 26 (4):306-15. [Medline].

  43. Leung DY, Hanifin JM, Pariser DM, et al. Effects of pimecrolimus cream 1% in the treatment of patients with atopic dermatitis who demonstrate a clinical insensitivity to topical corticosteroids: a randomized, multicentre vehicle-controlled trial. Br J Dermatol. 2009 Aug. 161(2):435-43. [Medline].

  44. Doss N, Reitamo S, Dubertret L, et al. Superiority of tacrolimus 0.1% ointment compared with fluticasone 0.005% in adults with moderate to severe atopic dermatitis of the face: results from a randomized, double-blind trial. Br J Dermatol. 2009 Aug. 161(2):427-34. [Medline].

  45. Remitz A, Reitamo S. Long-term safety of tacrolimus ointment in atopic dermatitis. Expert Opin Drug Saf. 2009 Jul. 8(4):501-6. [Medline].

  46. Jensen JM, Pfeiffer S, Witt M, et al. Different effects of pimecrolimus and betamethasone on the skin barrier in patients with atopic dermatitis. J Allergy Clin Immunol. 2009 May. 123(5):1124-33. [Medline].

  47. [Guideline] Patel TS, Greer SC, Skinner RB Jr. Cancer concerns with topical immunomodulators in atopic dermatitis: overview of data and recommendations to clinicians. Am J Clin Dermatol. 2007. 8(4):189-94. [Medline].

  48. Ring J, Mohrenschlager M, Henkel V. The US FDA 'black box' warning for topical calcineurin inhibitors: an ongoing controversy. Drug Saf. 2008. 31(3):185-98. [Medline].

  49. Simon D, Hosli S, Kostylina G, Yawalkar N, Simon HU. Anti-CD20 (rituximab) treatment improves atopic eczema. J Allergy Clin Immunol. 2008 Jan. 121(1):122-8. [Medline].

  50. Bukutu C, Deol J, Shamseer L, Vohra S. Complementary, holistic, and integrative medicine: atopic dermatitis. Pediatr Rev. 2007 Dec. 28(12):e87-94. [Medline].

  51. Deo M, Yung A, Hill S, Rademaker M. Methotrexate for treatment of atopic dermatitis in children and adolescents. Int J Dermatol. 2014 Aug. 53(8):1037-41. [Medline].

 
Previous
Next
 
Typical atopic dermatitis on the face of an infant.
Flexural involvement in childhood atopic dermatitis.
 
 
 
All material on this website is protected by copyright, Copyright © 1994-2016 by WebMD LLC. This website also contains material copyrighted by 3rd parties.