Close
New

Medscape is available in 5 Language Editions – Choose your Edition here.

 

Rett Syndrome Medication

  • Author: Bettina E Bernstein, DO; Chief Editor: Caroly Pataki, MD  more...
 
Updated: Jul 15, 2015
 

Medication Summary

No medications are available specifically for treatment of Rett syndrome (RS). Antiepileptic drugs (AEDs) may be prescribed to control seizurelike activity. Antireflux agents may be given to treat gastroesophageal reflux (GER). There is some evidence that levocarnitine may be effective. Sedative-hypnotic agents are used to treat sleep disturbances.

Next

Anticonvulsants, Other

Class Summary

AEDs are used to control seizure activity.

Carbamazepine (Tegretol, Epitol, Carbatrol)

 

Carbamazepine may block posttetanic potentiation by reducing summation of temporal stimulation. After a therapeutic response is achieved, the dosage may be reduced to the minimum effective level, or treatment may be discontinued at least once every 3 months.

Valproic acid (Depakote, Stavzor)

 

Valproic acid is chemically unrelated to other drugs that treat seizure disorders. Although the mechanism of action is not established, the drug's activity may be related to increased brain levels of gamma-aminobutyric acid (GABA) or enhanced GABA action. Valproate may also potentiate postsynaptic GABA responses, affect potassium channels, or exert a direct membrane-stabilizing effect.

For conversion to monotherapy, the concomitant AED dosage ordinarily can be reduced by approximately 25% every 2 weeks. This reduction may start at the initiation of therapy or may be delayed by 1-2 weeks if there is concern that seizures may occur with reduction. During this period, patients should be closely monitored for increased seizure frequency.

As adjunctive therapy, divalproex sodium may be added to the patient's regimen at a dosage of 10-15 mg/kg/day, which may be increased by 5-10 mg/kg/day every week to achieve an optimal clinical response. Ordinarily, an optimal clinical response is achieved at dosages lower than 60 mg/kg/day.

Topiramate (Topamax)

 

Topiramate is a sulfamate-substituted monosaccharide with broad-spectrum antiepileptic activity that may have state-dependent sodium channel-blocking action, which potentiates the inhibitory activity of GABA. It may block glutamate activity.

It is not necessary to monitor topiramate plasma concentrations to optimize therapy. Coadministration with phenytoin may necessitate adjustment of the phenytoin dosage to achieve an optimal clinical outcome.

Lamotrigine (Lamictal)

 

Lamotrigine is a phenyltriazine that is chemically unrelated to existing AEDs. The mechanism of action is unknown. Studies suggest that the drug inhibits voltage-sensitive sodium channels, stabilizing neuronal membranes and modulating presynaptic transmitter release of excitatory amino acids. The dose should be rounded down to the nearest 5-mg increment.

Previous
Next

Nutritional Supplements

Class Summary

Vagal nerve stimulators are amino acid derivatives synthesized from methionine and lysine. They are required in energy metabolism.

Levocarnitine (Carnitor)

 

Levocarnitine can promote excretion of excess fatty acids in patients with defects in fatty acid metabolism or specific organic acidopathies that bioaccumulate acyl CoA esters.

Previous
Next

Prokinetic agents

Class Summary

Prokinetic agents are used to augment cholinergic activity and improve motility in the gastrointestinal (GI) tract for treatment of reflux.

Metoclopramide (Reglan, Metozolv)

 

Metoclopramide increases GI motility, increases resting esophageal sphincter tone, and relaxes the pyloric sphincter.

Previous
Next

Sedative/Hypnotics

Class Summary

Sedative and hypnotic agents are used to induce sleep.

Zaleplon (Sonata)

 

Zaleplon is a nonbenzodiazepine hypnotic of the pyrazolopyrimidine class. Its chemical structure is unrelated to those of benzodiazepines, barbiturates, and other hypnotic drugs, but it interacts with GABA-BZ receptor complex. Zaleplon binds selectively to the omega1 receptor situated on the alpha subunit of the GABA-A receptor complex in the brain. It potentiates t-butyl-bicyclophosphorothionate binding.

Zolpidem (Ambien, Edluar, Intermezzo, Zolpimist)

 

Zolpidem is structurally dissimilar to benzodiazepines but similar in activity, with the exception of its reduced effects on skeletal muscle and seizure threshold.

Previous
 
Contributor Information and Disclosures
Author

Bettina E Bernstein, DO Distinguished Fellow, American Academy of Child and Adolescent Psychiatry; Distinguished Fellow, American Psychiatric Association; Clinical Assistant Professor of Neurosciences and Psychiatry, Philadelphia College of Osteopathic Medicine; Clinical Affiliate Medical Staff, Department of Child and Adolescent Psychiatry, Children's Hospital of Philadelphia; Consultant to theVillage, Private Practice; Consultant PMHCC/CBH at Family Court, Philadelphia

Bettina E Bernstein, DO is a member of the following medical societies: American Academy of Child and Adolescent Psychiatry, American Psychiatric Association

Disclosure: Nothing to disclose.

Coauthor(s)

Daniel G Glaze, MD Medical Director, Blue Bird Circle Rett Center; Professor, Departments of Pediatrics and Neurology, Baylor College of Medicine

Daniel G Glaze, MD is a member of the following medical societies: American Clinical Neurophysiology Society, American Neurological Association, Child Neurology Society

Disclosure: Nothing to disclose.

Chief Editor

Caroly Pataki, MD Health Sciences Clinical Professor of Psychiatry and Biobehavioral Sciences, University of California, Los Angeles, David Geffen School of Medicine

Caroly Pataki, MD is a member of the following medical societies: American Academy of Child and Adolescent Psychiatry, New York Academy of Sciences, Physicians for Social Responsibility

Disclosure: Nothing to disclose.

Acknowledgements

Joseph H Schneider, MD Assistant Professor of Pediatrics, University of Texas Southwestern Medical Center at Dallas, Southwestern Medical School

Joseph H Schneider, MD is a member of the following medical societies: American Academy of Pediatrics, American Medical Association, Texas Medical Association, and Texas Pediatric Society

Disclosure: Nothing to disclose.

Mary L Windle, PharmD Adjunct Associate Professor, University of Nebraska Medical Center College of Pharmacy; Editor-in-Chief, Medscape Drug Reference

Disclosure: Nothing to disclose.

References
  1. Kubota T, Miyake K, Hirasawa T. Role of epigenetics in Rett syndrome. Epigenomics. 2013 Oct. 5(5):583-92. [Medline].

  2. Amir RE, Van den Veyver IB, Wan M, et al. Rett syndrome is caused by mutations in X-linked MECP2, encoding methyl- CpG-binding protein 2. Nat Genet. 1999 Oct. 23(2):185-8. [Medline].

  3. Dayer AG, Bottani A, Bouchardy I, Fluss J, Antonarakis SE, Haenggeli CA, et al. MECP2 mutant allele in a boy with Rett syndrome and his unaffected heterozygous mother. Brain Dev. 2007 Jan. 29(1):47-50. [Medline].

  4. Hoffbuhr K, Devaney JM, LaFleur B. MeCP2 mutations in children with and without the phenotype of Rett syndrome. Neurology. 2001 Jun 12. 56(11):1486-95. [Medline].

  5. Huppke P, Laccone F, Kramer N, et al. Rett syndrome: analysis of MECP2 and clinical characterization of 31 patients. Hum Mol Genet. 2000 May 22. 9(9):1369-75. [Medline].

  6. Kankirawatana P, Leonard H, Ellaway C, et al. Early progressive encephalopathy in boys and MECP2 mutations. Neurology. 2006 Jul 11. 67(1):164-6. [Medline].

  7. Kerr AM, Archer HL, Evans JC, et al. People with MECP2 mutation-positive Rett disorder who converse. J Intellect Disabil Res. 2006 May. 50(Pt 5):386-94. [Medline].

  8. Moog U, Smeets EE, van Roozendaal KE, et al. Neurodevelopmental disorders in males related to the gene causing Rett syndrome in females (MECP2). Eur J Paediatr Neurol. 2003. 7(1):5-12. [Medline].

  9. Moretti P, Zoghbi HY. MeCP2 dysfunction in Rett syndrome and related disorders. Curr Opin Genet Dev. 2006 Jun. 16(3):276-81. [Medline].

  10. Philippe C, Villard L, De Roux N, et al. Spectrum and distribution of MECP2 mutations in 424 Rett syndrome patients: a molecular update. Eur J Med Genet. 2006 Jan-Feb. 49(1):9-18. [Medline].

  11. Wan M, Lee SS, Zhang X, et al. Rett syndrome and beyond: recurrent spontaneous and familial MECP2 mutations at CpG hotspots. Am J Hum Genet. 1999 Dec. 65(6):1520-9. [Medline].

  12. Zeev BB, Bebbington A, Ho G, Leonard H, de Klerk N, Gak E, et al. The common BDNF polymorphism may be a modifier of disease severity in Rett syndrome. Neurology. 2009 Apr 7. 72(14):1242-7. [Medline].

  13. Temudo T, Ramos E, Dias K, Barbot C, Vieira JP, Moreira A, et al. Movement disorders in Rett syndrome: an analysis of 60 patients with detected MECP2 mutation and correlation with mutation type. Mov Disord. 2008 Jul 30. 23(10):1384-90. [Medline].

  14. Nectoux J, Bahi-Buisson N, Guellec I, Coste J, De Roux N, Rosas H, et al. The p.Val66Met polymorphism in the BDNF gene protects against early seizures in Rett syndrome. Neurology. 2008 May 27. 70(22 Pt 2):2145-51. [Medline].

  15. Percy AK, Neul JL, Glaze DG, et al. Rett syndrome diagnostic criteria: lessons from the Natural History Study. Ann Neurol. 2010 Dec. 68(6):951-5. [Medline]. [Full Text].

  16. Suter B, Treadwell-Deering D, Zoghbi HY, Glaze DG, Neul JL. Brief Report: MECP2 Mutations in People Without Rett Syndrome. J Autism Dev Disord. 2013 Aug 7. [Medline].

  17. American Psychiatric Association. Diagnostic and Statistical Manual of Mental Disorders, Fifth Edition. 5th. Arlington, VA: American Psychiatric Association; 2013. 57.

  18. Monteggia LM, Kavalali ET. Rett syndrome and the impact of MeCP2 associated transcriptional mechanisms on neurotransmission. Biol Psychiatry. 2009 Feb 1. 65(3):204-10. [Medline].

  19. Zhang Y, Minassian BA. Will my Rett syndrome patient walk, talk, and use her hands?. Neurology. 2008 Apr 15. 70(16):1302-3. [Medline].

  20. Maezawa I, Swanberg S, Harvey D, LaSalle JM, Jin LW. Rett syndrome astrocytes are abnormal and spread MeCP2 deficiency through gap junctions. J Neurosci. 2009 Apr 22. 29(16):5051-61. [Medline].

  21. Bebbington A, Downs J, Percy A, Pineda M, Zeev BB, Bahi-Buisson N, et al. The phenotype associated with a large deletion on MECP2. Eur J Hum Genet. 2012 Apr 4. [Medline].

  22. Tropea D, Giacometti E, Wilson NR, Beard C, McCurry C, Fu DD, et al. Partial reversal of Rett Syndrome-like symptoms in MeCP2 mutant mice. Proc Natl Acad Sci U S A. 2009 Feb 10. 106(6):2029-34. [Medline].

  23. Glaze DG, Schultz RJ. Rett Syndrome: Meeting the Challenge of This Gender-Specific Neurodevelopmental Disorder. Medscape Womens Health. 1997 Jan. 2(1):3. [Medline].

  24. Sampieri K, Meloni I, Scala E, et al. Italian Rett database and biobank. Hum Mutat. 2007 Apr. 28(4):329-35. [Medline].

  25. Terai K, Munesue T, Hiratani M, Jiang ZY, Jibiki I, Yamaguchi N. The prevalence of Rett syndrome in Fukui prefecture. Brain Dev. 1995 Mar-Apr. 17(2):153-4. [Medline].

  26. Huppke P, Maier EM, Warnke A, et al. Very mild cases of Rett syndrome with skewed X inactivation. J Med Genet. 2006 May 11. [Medline].

  27. Kozinetz CA, Skender ML, MacNaughton N, et al. Epidemiology of Rett Syndrome: a population-based registry. Pediatrics. 1993. 91(2):445-50. [Medline].

  28. Hagberg B, Berg M, Steffenburg U. Rett Syndrome - an odd handicap afffecting girls. A current 25-year follow-up in western Sweden. Lakartidningen. 1999. 96(49):5488-90. [Medline].

  29. Kerr AM, Julu PO. Recent insights into hyperventilation from the study of Rett syndrome. Arch Dis Child. 1999 Apr. 80(4):384-7. [Medline].

  30. Vignoli A, La Briola F, Canevini MP. Evolution of stereotypies in adolescents and women with Rett syndrome. Mov Disord. 2009 Jul 15. 24(9):1379-83. [Medline].

  31. Amir RE, Sutton VR, Van den Veyver IB. Newborn screening and prenatal diagnosis for Rett syndrome: implications for therapy. J Child Neurol. 2005 Sep. 20(9):779-83. [Medline].

  32. Ham AL, Kumar A, Deeter R. Does genotype predict phenotype in Rett syndrome?. J Child Neurol. 2005 Sep. 20(9):768-78. [Medline].

  33. Ellaway CJ, Sholler G, Leonard H, et al. Prolonged QT interval in Rett syndrome. Arch Dis Child. 1999 May. 80(5):470-2. [Medline].

  34. Glaze DG, Schultz RJ, Frost JD. Rett syndrome: characterization of seizures versus non-seizures. Electroencephalogr Clin Neurophysiol. 1998 Jan. 106(1):79-83. [Medline].

  35. Glaze DG, Percy AK, Motil KJ, Lane JB, Isaacs JS, Schultz RJ, et al. A study of the treatment of Rett syndrome with folate and betaine. J Child Neurol. 2009 May. 24(5):551-6. [Medline].

  36. Wilfong AA, Schultz RJ. Vagus nerve stimulation for treatment of epilepsy in Rett syndrome. Dev Med Child Neurol. 2006 Aug. 48(8):683-6. [Medline].

  37. Chung JC, Lai CK, Chung PM, French HP. Snoezelen for dementia. Cochrane Database Syst Rev. 2002. CD003152. [Medline].

  38. Lavie E, Shapiro M, Julius M. Hydrotherapy combined with Snoezelen multi-sensory therapy. Int J Adolesc Med Health. 2005 Jan-Mar. 17(1):83-7. [Medline].

  39. Lotan M. Management of Rett syndrome in the controlled multisensory (Snoezelen) environment. A review with three case stories. ScientificWorldJournal. 2006. 6:791-807. [Medline].

  40. Downs J, Young D, de Klerk N, Bebbington A, Baikie G, Leonard H. Impact of scoliosis surgery on activities of daily living in females with Rett syndrome. J Pediatr Orthop. 2009 Jun. 29(4):369-74. [Medline].

  41. Hartman AL. Does the effectiveness of the ketogenic diet in different epilepsies yield insights into its mechanisms?. Epilepsia. 2008 Nov. 49 Suppl 8:53-6. [Medline].

  42. Motil KJ, Schultz RJ, Browning K, et al. Oropharyngeal dysfunction and gastroesophageal dysmotility are present in girls and women with Rett syndrome. J Pediatr Gastroenterol Nutr. 1999 Jul. 29(1):31-7. [Medline].

  43. Leonard H, Thomson MR, Glasson EJ, et al. A population-based approach to the investigation of osteopenia in Rett syndrome. Dev Med Child Neurol. 1999 May. 41(5):323-8. [Medline].

  44. PapiniAM, Nuti F, Real-Fernandez F, Rossi G, Tiberi C, Sabatino G, et al. Immune Dysfunction in Rett Syndrome Patients Revealed by High Levels of Serum Anti-N (Glc) IgM Antibody Fraction. J of Immunology Research. 2014. 1-6.

  45. Gadalla KKE, Ross PD, Riddell JS, Bailey MES, Cobb SR. Knockout Mouse Model of Rett Syndrome Reveals Early-Onset and Progressive Motor Deficits. PLoS One. 2014. 9(11):1-5.

  46. Zhang W, Peterson M, Beyer B, Frankel WN, Zhang ZW. Loss of MeCP2 From Forebrain Excitatory Neurons Leads to Cortical Hyperexcitation and Seizures. J of Neuroscience. Feb 2014. Feb 12:2754-2763.

  47. Abdala AP, Lioy DT, Garg SK, Knopp SJ, Paton JF, Bissonnette JM. Effect of Sarizotan, a 5-HT1a and D2-like receptor agonist, on respiration in three mouse models of Rett syndrome. Am J Respir Cell Mol Biol. 2014 Jun. 50 (6):1031-9. [Medline].

 
Previous
Next
 
 
 
 
All material on this website is protected by copyright, Copyright © 1994-2016 by WebMD LLC. This website also contains material copyrighted by 3rd parties.