Hyperaldosteronism Workup

  • Author: George P Chrousos, MD, FAAP, MACP, MACE, FRCP(London); Chief Editor: Stephen Kemp, MD, PhD  more...
 
Updated: Dec 10, 2015
 

Laboratory Studies

Evaluation of a patient in whom hyperaldosteronism is suggested has several distinct stages. The finding of hypertension, hypokalemia, or both most commonly precipitates the decision to screen. The presence of these 2 features together has a 50% predictive value.

Screening for PA is recommended for patients with Joint National Commission (JNC) stage 2 (>160–179/100–109 mm Hg), stage 3 (>180/110 mm Hg), or drug-resistant hypertension (defined as systolic BP >140 and diastolic BP >90 despite treatment with 3 hypertensive medications); hypertension and spontaneous or diuretic-induced hypokalemia; hypertension with adrenal incidentaloma; or hypertension and a family history of early onset hypertension or cerebrovascular accident at a young age (< 40 y); and all hypertensive first-degree relatives of patients with PA. Additionally, in patients younger than 20 years or those with a family history of PA or stroke at a young age (< 40 y), or with an onset at a young age (eg, < 20 y), genetic testing for glucocorticoid-remediable aldosteronism is suggested.[19, 22]

The first step in the workup entails confirming that hyperaldosteronism is present and, if it is not present, excluding other conditions that produce a similar picture. The next step involves differentiating primary causes of hyperaldosteronism from secondary causes.

Aldosterone-to-renin ratio

The aldosterone-to-renin ratio (ARR)—that is, the ratio of plasma aldosterone (expressed in ng/dL) to plasma renin activity (PRA, expressed in ng/mL/h)—is the most sensitive means of differentiating primary from secondary causes of hyperaldosteronism. It can be obtained under random conditions of sodium intake.

The principle behind this test is that as aldosterone secretion rises, PRA (which measures the rate of production of angiotensin I from endogenous angiotensinogen) in ex vivo testing should fall because of sodium retention. This negative feedback response should occur when the aldosterone levels are supraphysiologic for that individual patient, and PRA may fall well before plasma aldosterone is clearly increased.

Values obtained in the upright position (ie, with the patient standing for 2 h) are more sensitive than supine test results. Patients should be encouraged not to restrict salt intake and hypokalemia should be corrected before testing because low potassium suppresses aldosterone secretion. Most authors recommend an ARR of 20-40, whereas an ARR of at least 35 has 100% sensitivity and 92.3% specificity in diagnosing PA. Some investigators require elevated aldosterone levels in addition to elevated ARR for a positive screening test for PA (usually aldosterone >15 ng/dL). Against a formal cut-off level for aldosterone are the findings of several studies, indicating that 36–48% of individuals with PA have plasma aldosterone levels between 9–16 ng/dL and approximately 20% of individuals with unilateral autonomous adrenal aldosterone production have levels less than 15 ng/dL.[1, 19, 21, 22]

The most important factors that can interfere with the diagnostic reliability of the ARR test are drugs and renal impairment (Table below).[19, 22, 28] Beta blockers can reduce PRA, leading to a falsely elevated ARR, and dihydropyridine calcium antagonists (eg, nifedipine) can reduce aldosterone levels, potentially leading to a falsely normal ARR in some patients with primary hyperaldosteronism. Diuretics tend to induce secondary hyperaldosteronism. Spironolactone, an aldosterone receptor antagonist, can raise plasma renin levels.

Table 1. Factors affecting interpretation of ARR results (Open Table in a new window)

False Negative Results
Factor Aldosterone Renin ARR
Medications      
K-sparing diuretics ↑↑
K-wasting diuretics (Non-K-sparing diuretics, such as thiazides, induce renal potassium losses and reduce plasma potassium concentrations, leading to decreased aldosterone secretion.) →↑ ↑↑
ACE inhibitors ↑↑
Angiotensin receptor blockers ↑↑
DHPs (It is a shared opinion that dihydropyridinic calcium channel blockers do not significantly affect aldosterone secretion, mainly causing an increase in PRA, which rarely gives false negatives.) →↓
Other conditions
Hypokalemia →↑
Sodium-restricted diet ↑↑
Pregnancy ↑↑
Renovascular hypertension ↑↑
Malignant hypertension ↑↑
False Positive Results
Beta-adrenergic blockers ↓↓
Central alpha-2 agonists (eg, clonidine, alpha-methyldopa) ↓↓
NSAIDS ↓↓
Other conditions
Potassium loading →↓
Sodium-loaded diet ↓↓
Advancing age ↓↓
Renal dysfunction →↑
PHA-2
Luteal phase of menstrual cycle PRA: Unchanged
Antihypertensive Medications With Minimal Effect on the ARR
Prazosin, doxazosin, terazosin   ←→
Verapamil, hydralazine   ←→
Other medications
Renin inhibitors (Renin inhibitors raise the ARR if renin is measured as PRA [false positive] and lower it if measured as DAR concentration [false negative.]) ↑↓ ↑↓
SSRIs
OCPs (OCPs have little effect on ARR when renin is measured as PRA. Use of immunometric measurements of DAR rather than PRA may give false positive results. Subdermal etonogestrel has no effect on ARR.) ↓DAR
Liddle syndrome Normal
 



ARR, aldosterone-renin ratio; NSAIDs, non-steroidal anti-inflammatory drugs; K, potassium; ACE, angiotensin converting enzyme; ARBs, angiotensin II type 1 receptor blockers; DHPs, dihydropyridines; PHA-2, pseudohypoaldosteronism type 2; PRA, plasma renin activity; DAR, direct active renin; OCPs, oral contraceptive agents; SSRIs, selective serotonin reuptake inhibitors



 

Spironolactone and diuretics should be withheld for 6 weeks before testing.

If necessary to maintain hypertension control, patients should be treated with other antihypertensive medications that have lesser effects on the ARR (ie, verapamil slow-release, hydralazine [with verapamil slow-release, to avoid reflex tachycardia], prazosin, doxazosin, terazosin). See Table above. It is a shared opinion that dihydropyridinic calcium channel blockers do not significantly affect aldosterone secretion, causing mainly an increase in PRA, which rarely gives false negatives.[29, 30]

Βeta-blockers, ACE inhibitors, selective-serotonin reuptake inhibitors, and oral contraceptives have been shown to influence the results of the test. Ideal testing conditions involve discontinuation of such medications 2 weeks prior.

Patients should also eliminate products derived from the licorice root because these can interfere with 11beta-hydroxysteroid dehydrogenase, producing a state of apparent mineralocorticoid excess.

Renal impairment can lead to a high ARR in patients without primary hyperaldosteronism because fluid retention suppresses PRA and hyperkalemia stimulates aldosterone secretion.

Renin assays should be sufficiently sensitive to measure levels as low as 0.2–0.3 ng/mL/h (DRC 2 mU/L).

Recent data suggest that the random urinary aldosterone-to-creatinine ratio (UACR) might enable the diagnosis of PA in concordance with the 24-hour urinary aldosterone level (Uald-24 h). The thresholds with the best sensitivity for a specificity of 90.6% of the UACR were 3 ng/mg and that of the Uald-24 h was 20.3 mcg, in a single study.[31]

After a positive screening test result, subsequent testing is directed at confirming aldosterone secretory autonomy and differentiating an APA, for which surgery is currently first-line treatment, from idiopathic hyperaldosteronism (IHA), which is usually treated medically. The possibility of GRA, which accounts for approximately 1% of cases of primary hyperaldosteronism, should be kept in mind.

Tests for confirming autonomous aldosterone secretion

Currently, US and Japanese guidelines recommend confirmatory testing in the work-up of PA; however, no test is seen as the criterion standard because of insufficient evidence.

The saline infusion test can confirm autonomous aldosterone secretion. Other tests described include measurement of urine aldosterone excretion during oral salt loading and the fludrocortisone suppression test. All tests rely on the principle that a lack of suppression of aldosterone excretion with intravascular expansion is indicative of aldosterone production.

Saline infusion test

Patients stay in the recumbent position for at least 1 hour before and during the infusion of 2 liters of 0.9% saline intravenously (IV) over 4 hours, starting at 8:00–9.30 AM. Blood samples for renin, aldosterone, cortisol, and plasma potassium are measured at time 0 and after 4 hours, with blood BP and heart rate monitored throughout the test. Postinfusion plasma aldosterone levels less than 5 ng/dL make the diagnosis of PA unlikely. In individuals without primary hyperaldosteronism, plasma aldosterone levels should fall to less than 10 ng/dL. Plasma aldosterone values higher than 10 ng/dL confirm primary hyperaldosteronism, and levels 5-10 ng/dL may be considered borderline.

Cortisol levels are taken to exclude an adrenocorticotropic hormone (ACTH)–mediated rise in aldosterone. The modified saline infusion test, performed after dexamethasone administration (0.5 mg every 6 h for 2 consecutive days) to eliminate any ACTH effect on aldosterone secretion, has been shown to have higher sensitivity compared with the classic saline infusion test in one study.[32] Consider the risks of fluid expansion or hypokalemia in susceptible patients.

Oral salt loading test

Patients should increase their sodium intake to more than 6 g/d for 3 days with diet and sodium chloride tabs. Potassium supplementation and daily potassium measurements are required for patients with hypokalemia. Patients perform 24-hour urine collection starting on day 3 for sodium and aldosterone. Potassium supplementation and daily potassium measurements are required for patients with hypokalemia. A 24-hour urinary aldosterone excretion of more than 12 mcg/d is consistent with PA, whereas 24-hour urinary sodium of 200 mEq/24 h indicates adequate intake. This test should not be performed in patients with uncontrolled hypertension, congestive heart failure, or arrhythmias. Renal insufficiency may confound the interpretation of the results (false negative).

Captopril test

The captopril test has also been used for screening. Its use is based on the principle that inhibition of angiotensin II production should not affect autonomous secretion of aldosterone in PA. Patients receive 25–50 mg of oral captopril after sitting or standing for 1 h. Plasma aldosterone concentration, renin, and cortisol levels are measured before captopril administration and 1 or 2 hours after. Plasma aldosterone concentration is suppressed by 30% or more if primary hyperaldosteronism is not present. ARR is more than 30–50, plasma aldosterone concentration remains elevated (≥8.5 ng/dL), and renin remains suppressed in primary hyperaldosteronism. Differences may be seen between patients with APA and those with IHA, in that some decrease of aldosterone levels is occasionally seen in IHA. High rates of false negative or equivocal results have been reported, although this test is considered safer in patients at risk of volume overload.

Fludrocortisone suppression test

The fludrocortisone suppression test uses fludrocortisone (0.1 mg every 6 h) and salt loading.[33, 34] Patients receive 0.1 mg oral fludrocortisone every 6 hours for 4 days, together with slow-release potassium chloride supplements (every 6 h at doses sufficient to keep plasma potassium close to 4 mmol/L). Serum potassium is measured four times daily. High-sodium diet plus sodium chloride tabs are administered (30 mmol 3 times daily with meals) to maintain a urinary sodium excretion rate of at least 3 mmol/kg body weight. On day 4, plasma cortisol is measured at 7 or 8 AM and 10 AM, and plasma aldosterone concentration and renin are measured at 10 AM, with the patient in the seated position.

Upright plasma aldosterone higher than 6 ng/dL on day 4 at 10 AM confirms PA, provided that PRA is suppressed to less than 1 ng/mL/h, plasma potassium levels are normal and 10 AM plasma cortisol concentration is lower than the value obtained at 7 AM (to exclude a confounding ACTH effect). The test should not be performed in patients with uncontrolled hypertension, congestive heart failure, or arrhythmias, whereas false negative results may be obtained in renal insufficiency.

The use of the combined fludrocortisone-dexamethasone suppression test (FDST), which involves the co-administration of dexamethasone 2 mg at midnight, has been recently applied by some investigators to eliminate the stimulatory input of ACTH on aldosterone secretion, thus increasing substantially the sensitivity and specificity of the FDST and enabling the detection of milder forms of primary hyperaldosteronism.[16, 27, 30, 29, 35, 36]

Tests for differentiating aldosterone-producing adenoma from other primary hyperaldosteronism

Postural testing

Postural testing is best performed after overnight recumbency. An IV catheter is inserted at 7 AM, and baseline aldosterone, cortisol, and PRA values are obtained at 8 AM. After 2 hours of ambulation, these values are obtained again.

Typically, APAs are unresponsive to angiotensin II, and a fall in aldosterone over 2 hours is observed in parallel with reduced circadian ACTH and cortisol release. In IHA, however, a rise in aldosterone is observed, during walking compared with lying down, because upright posture stimulates renin secretion. Cortisol levels are used to validate the test; a rise in cortisol release suggests an ACTH surge, which invalidates the test. Of note, 30–50% of APAs respond to upright posture and 20% of bilateral adrenal hyperplasia are unresponsive. A diagnostic accuracy of 85% is reported.

18-Hydroxycorticosterone level

levels of 18-hydroxycorticosterone are typically elevated (>100 ng/dL) in patients with APAs and are significantly lower in patients with IHA. Although a diagnostic accuracy of 82% is reported, 18-hydroxycorticosterone levels have been noted to parallel the severity of hyperaldosteronism, and levels of aldosterone and clinical severity are greater in APAs than in IHA.

Hybrid steroid levels (18-OHF and 18-oxoF) are high (3–30 times normal) in with FH-I, normal to mildly elevated in FH-II (3–4 times normal, as in sporadic PA), and mildly to extremely high in FH-III (3–100 times normal).

Dexamethasone suppression test

In cases of bilateral aldosterone secretion or when the diagnosis is suspected on the basis of the family history, GRA can be excluded by means of a 4-day dexamethasone suppression test (using a dosage of 0.5 mg every 6 h).

The aldosterone, renin and cortisol levels can be measured before suppression testing, after 2 days of testing, and after 4 days of testing. In patients without GRA, aldosterone levels typically fall by approximately 50% and return to the reference range by the end of testing; however, persistent suppression of aldosterone levels to less than 4 ng/dL are reported in patients with GRA. Plasma cortisol suppression (ie, < 5 mcg/dL) is used as an index of the dexamethasone effect. Compared with direct genetic testing, this test achieves a sensitivity of 92% and a specificity of 100% for the diagnosis of GRA.

Biochemically unique, markedly elevated levels of 18-oxocortisol and 18-hydroxycortisol (>100 nmol/day) are also observed in GRA and have been shown to be better than the dexamethasone suppression test for the diagnosis of GRA.

Mutation analysis for the hybrid gene that gives rise to GRA can now be accomplished by means of Southern blotting or a long polymerase chain reaction (PCR) technique. This study is likely to supersede the time-intensive dexamethasone suppression test.

In patients with FH-II, suppression of plasma aldosterone concentration may vary in response to glucocorticoid suppression test (partial, transient, blunted reduction or unresponsive).[37]

FH-III is a distinct disorder characterized by a paradoxical increase of aldosterone after ACTH suppression in some patients, while others demonstrate no response.

Of interest, data have shown that the titer of circulating autoantibodies directed against the second loop of the angiotensin 1 receptor (AT1AA), as well as the serum levels of parathyroid hormone, were both higher in patients with APA than those with IHA or essential hypertension, with only a small overlap between values for patients with APA and IHA.[38, 39] Hence, the determination of those parameters may provide helpful additional information for the diagnostic discrimination between these conditions.

Next

Computed Tomography and Scintigraphy

The sensitivity and specificity of adrenal imaging with 1.25-3 mm cuts for APA is 78% and 75%, respectively. Findings may range from normal-appearing or slightly enlarged adrenal glands suggestive of bilateral adrenal hyperplasia, to small, homogeneous, hypodense nodules characteristic of APAs or, rarely, large, dense heterogeneous masses suggestive of ACC (almost always >4 cm in diameter).

In one large series, the mean APA size was 1.8 cm; however, 19% of these tumors were smaller than 1 cm. Aldosteronomas are typically lipid-rich and commonly appear as homogeneous lesions with a low Hounsfield number consistent with this high lipid content. Reported data show that if imaging alone was used for localization, 14.6% of patients would have undergone inappropriate adrenalectomy, whereas 19.1% would have been inappropriately excluded from surgery. Furthermore, in 3.9% of patients, the wrong adrenal might have been removed.

Of note, many APAs are too small to be detected and nonfunctioning incidentalomas may be mistakenly identified as causative.[1, 21, 22] Hence, the primary role of CT is to the exclude the presence of ACC. In addition, CT is also useful in defining the adrenal anatomy and localizing the right adrenal vein in preparation for adrenal venous sampling (AVS) as it enters into the inferior vena cava, thus aiding cannulation of the vein during AVS.

When a solitary adrenal mass is identified on a CT scan from a child or young adult with hyperaldosteronism, it is very likely to be the cause of the hyperaldosteronism because the prevalence of nonfunctioning adrenal adenomas is very low in childhood.

The interest in adrenal cortical scintigraphy has been renewed by the use of the new hybrid single photon emission tomography (SPET)/CT technology. Hybrid imaging permits correct localization of findings by incorporating anatomical and functional information. The NP-59 (6b-131) iodomethyl-19-Norcholesterol scan, performed with dexamethasone suppression, was a helpful diagnostic tool in the detection and lateralization of PA. SPET/CT can identify small adenomas (0.8-1.5 cm) even in patients with chronic renal disease where the biochemical diagnosis of PA is difficult. Lately, (11)C-metomidate PET-CT with and without dexamethasone suppression was found to be a sensitive and specific noninvasive alternative to AVS.[40] However, the value of SPEST/CT has to be proved in large patient series with reference to AVS.

Previous
Next

Adrenal Venous Sampling

AVS is the criterion standard test to differentiate unilateral (APA or UAH) from bilateral disease in patients with PA; however, it requires considerable skill. It can be performed as an outpatient procedure, although younger children may need general anesthesia. Ideally, the procedure should be performed in centers with appropriate expertise. Adrenal veins are often small, and the right vein tends to be difficult to cannulate.

According to a consensus statement from an international panel of experts, AVS is not necessarily required in patients older than 40 years with marked PA and a clear unilateral adrenal adenoma and a normal contralateral adrenal gland on computed tomography imaging, in patients with unacceptable high risk of adrenal surgery (eg, multiple comorbidities in elderly patients), in patients suspected of having an adrenocortical carcinoma, or in patients with proven FH-I or with FH-III.[38]

ACTH may be infused into a peripheral vein (at a dosage of 50 mcg/h, starting 30 minutes before sampling) to mask the effects of confounding ACTH peaks during sampling. To reduce the risk of adrenal hemorrhage, adrenal venography is avoided.

If cosyntropin stimulation is not used, AVS is best performed in the morning after an hour of supine rest, to avoid false positive results due to diurnal fluctuation in ACTH concentrations. Additional measures, such as use of benzodiazepines and local anesthesia before venipuncture, should be taken to minimize emotional and pain-related stress.

Hypokalemia should be adequately corrected before AVS. Mineralocorticoid receptor antagonists and amiloride should be withdrawn for 4-6 weeks before AVS. Particularly, the former may allow a rise in renin secretion, which can stimulate aldosterone secretion from the unaffected contralateral adrenal gland, thus minimizing the lateralization. Peripheral α1-adrenergic receptor blockers and the long-acting dihydropyridine or nondihydropyridine calcium-channel blockers (verapamil) are recommended because of their minimal effect on renin secretion.

If cosyntropin stimulation is not used, then bilateral simultaneous AVS should be performed.

An adrenal vein cortisol-to-inferior vena cava cortisol ratio (selectivity index/SI) is used to confirm adequate cannulation of adrenal veins. The cut-off value for the SI should be 2 or higher for AVS performed under unstimulated conditions and 3 or higher for AVS performed during cosyntropin stimulation.

The lateralization index (LI), calculated from the PAC and plasma cortisol concentration (PCC) in both adrenal veins and defined as the ratio of the higher (dominant) over the lower (nondominant) PAC/PCC ratio is used for the assessment of lateralization of aldosterone hypersecretion. Although data on LI cut-off values are controversial, LI cutoff of 4 during cosyntropin stimulation and of 2 for unstimulated AVS have been recommended as the criteria to document lateralization of aldosterone excess. AVS studies using cosyntropin stimulation are considered equivocal when the LI is 2-4.

Adrenal venous sampling is not without risk and can lead to damage of the adrenal gland if not performed correctly. The major complications include adrenal vein rupture, infarction, thrombosis, groin hematoma, and adrenal hemorrhage, whereas associated complete and permanent adrenal insufficiency have been only occasionally reported. Even in experienced centers, the complication rate averages 0.5-2.5%. Similarly, failure to cannulate the right adrenal vein (≤ 20% of cases) can lead to an incorrect diagnosis of unilateral disease when, in fact, both glands are affected.

Previous
Next

Histologic Findings

Unlike cortisol-producing adrenocortical tumors, in which the remaining ipsilateral and contralateral glands are commonly atrophic, APAs may show hyperplasia of the zona glomerulosa in the nontumorous cortex, either forming a broad zone locally or thickening the entire cortex, with tongues of glomerulosa like cortex extending inward from the subcapsular region.

This appearance has been reported in as many as one third of patients with APAs and suggests that the tumor has arisen from within an area that was hyperplastic, though to date, neither an external stimulus nor an intrinsic defect has been found.

IHA is a disease of the zona glomerulosa with a variable macroscopic appearance that can range from hyperplasia with micronodules and macronodules to hyperplasia without nodules to normal-appearing zona glomerulosa with micronodules. The glands may be normal in weight or heavy.

The normal microscopic appearance of the zona glomerulosa is of small discontinuous subcapsular nests of cells. In hyperplasia, the zona glomerulosa may contain continuous bands of cells that may be visibly thickened, either forming a continuous sheet or focally extending as tongues into the adjacent cortex. This process may be focal or diffuse and may vary from one part of the gland to another, requiring multiple sections.

GRA, or familial hyperaldosteronism (FH) type I (FH-I), results from the formation of a hybrid gene that leads to ACTH-mediated mineralocorticoid synthesis by the zona fasciculata. Histologically, evidence suggests hyperplasia of this zone in addition to the zona glomerulosa.

FH type II (FH-II) has been linked to a locus on chromosome 7p22. Histologically, evidence suggests adrenocortical hyperplasia or hypertrophy and the presence of adenomas.

Previous
 
 
Contributor Information and Disclosures
Author

George P Chrousos, MD, FAAP, MACP, MACE, FRCP(London) Professor and Chair, First Department of Pediatrics, Athens University Medical School, Aghia Sophia Children's Hospital, Greece; UNESCO Chair on Adolescent Health Care, University of Athens, Greece

George P Chrousos, MD, FAAP, MACP, MACE, FRCP(London) is a member of the following medical societies: American Academy of Pediatrics, American College of Physicians, American Pediatric Society, American Society for Clinical Investigation, Association of American Physicians, Endocrine Society, Pediatric Endocrine Society, Society for Pediatric Research, American College of Endocrinology

Disclosure: Nothing to disclose.

Coauthor(s)

Amalia Sertedaki, PhD Research Associate, Molecular Endocrinology Laboratory, Division of Endocrinology, Diabetes and Metabolism, First Department of Pediatrics, Aghia Sophia Children's Hospital, University of Athens Medical School, Greece

Disclosure: Nothing to disclose.

Eleni Magdalini Kyritsi, MD, PhD Clinical Resident in Endocrinology, Division of Endocrinology, Metabolism and Diabetes, First Department of Pediatrics, "Aghia Sophia" Children's Hospital, University of Athens Medical School, Greece

Disclosure: Nothing to disclose.

Chief Editor

Stephen Kemp, MD, PhD Former Professor, Department of Pediatrics, Section of Pediatric Endocrinology, University of Arkansas for Medical Sciences College of Medicine, Arkansas Children's Hospital

Stephen Kemp, MD, PhD is a member of the following medical societies: American Academy of Pediatrics, American Association of Clinical Endocrinologists, American Pediatric Society, Endocrine Society, Phi Beta Kappa, Southern Medical Association, Southern Society for Pediatric Research

Disclosure: Nothing to disclose.

Acknowledgements

Antony Lafferty, MB ChB, FRACP Senior Lecturer of Pediatric Endocrinology, Monash University Department of Pediatrics, National Institutes of Health, Bethesda, MD, and Princess Margaret Hospital for Children, Perth, Western Australia

Antony Lafferty, MB ChB, FRACP is a member of the following medical societies: Endocrine Society

Disclosure: Nothing to disclose.

Lynne Lipton Levitsky, MD Chief, Pediatric Endocrine Unit, Massachusetts General Hospital; Associate Professor of Pediatrics, Harvard Medical School

Lynne Lipton Levitsky, MD is a member of the following medical societies: Alpha Omega Alpha, American Academy of Pediatrics, American Diabetes Association, American Pediatric Society, Endocrine Society, Pediatric Endocrine Society, and Society for Pediatric Research

Disclosure: Pfizer Grant/research funds P.I.; Tercica Grant/research funds Other; Eli Lily Grant/research funds PI; NovoNordisk Grant/research funds PI; NovoNordisk Consulting fee Consulting; Onyx Heart Valve Consulting fee Consulting

Thomas A Wilson, MD Professor of Clinical Pediatrics, Chief and Program Director, Division of Pediatric Endocrinology, Department of Pediatrics, The School of Medicine at Stony Brook University Medical Center

Thomas A Wilson, MD is a member of the following medical societies: Endocrine Society, Pediatric Endocrine Society, and Phi Beta Kappa

Disclosure: Nothing to disclose.

Mary L Windle, PharmD Adjunct Associate Professor, University of Nebraska Medical Center College of Pharmacy; Editor-in-Chief, Medscape Drug Reference

Disclosure: Nothing to disclose.

References
  1. Aronova A, Iii TJ, Zarnegar R. Management of hypertension in primary aldosteronism. World J Cardiol. 2014 May 26. 6(5):227-33. [Medline]. [Full Text].

  2. Weisbrod AB, Webb RC, Mathur A, Barak S, Abraham SB, Nilubol N, et al. Adrenal histologic findings show no difference in clinical presentation and outcome in primary hyperaldosteronism. Ann Surg Oncol. 2013 Mar. 20(3):753-8. [Medline]. [Full Text].

  3. Funder JW. The genetic basis of primary aldosteronism. Curr Hypertens Rep. 2012 Apr. 14(2):120-4. [Medline].

  4. Lifton RP, Dluhy RG, Powers M, Rich GM, Cook S, Ulick S, et al. A chimaeric 11 beta-hydroxylase/aldosterone synthase gene causes glucocorticoid-remediable aldosteronism and human hypertension. Nature. 1992 Jan 16. 355(6357):262-5. [Medline].

  5. Torpy DJ, Gordon RD, Lin JP, Huggard PR, Taymans SE, Stowasser M, et al. Familial hyperaldosteronism type II: description of a large kindred and exclusion of the aldosterone synthase (CYP11B2) gene. J Clin Endocrinol Metab. 1998 Sep. 83(9):3214-8. [Medline].

  6. Lafferty AR, Torpy DJ, Stowasser M, Taymans SE, Lin JP, Huggard P, et al. A novel genetic locus for low renin hypertension: familial hyperaldosteronism type II maps to chromosome 7 (7p22). J Med Genet. 2000 Nov. 37(11):831-5. [Medline]. [Full Text].

  7. Choi M, Scholl UI, Yue P, Björklund P, Zhao B, Nelson-Williams C, et al. K+ channel mutations in adrenal aldosterone-producing adenomas and hereditary hypertension. Science. 2011 Feb 11. 331(6018):768-72. [Medline]. [Full Text].

  8. Scholl UI, Nelson-Williams C, Yue P, Grekin R, Wyatt RJ, Dillon MJ, et al. Hypertension with or without adrenal hyperplasia due to different inherited mutations in the potassium channel KCNJ5. Proc Natl Acad Sci U S A. 2012 Feb 14. 109(7):2533-8. [Medline]. [Full Text].

  9. Charmandari E, Sertedaki A, Kino T, Merakou C, Hoffman DA, Hatch MM, et al. A novel point mutation in the KCNJ5 gene causing primary hyperaldosteronism and early-onset autosomal dominant hypertension. J Clin Endocrinol Metab. 2012 Aug. 97(8):E1532-9. [Medline]. [Full Text].

  10. Boulkroun S, Beuschlein F, Rossi GP, Golib-Dzib JF, Fischer E, Amar L, et al. Prevalence, clinical, and molecular correlates of KCNJ5 mutations in primary aldosteronism. Hypertension. 2012 Mar. 59(3):592-8. [Medline].

  11. Taguchi R, Yamada M, Nakajima Y, Satoh T, Hashimoto K, Shibusawa N, et al. Expression and mutations of KCNJ5 mRNA in Japanese patients with aldosterone-producing adenomas. J Clin Endocrinol Metab. 2012 Apr. 97(4):1311-9. [Medline].

  12. Monticone S, Hattangady NG, Nishimoto K, Mantero F, Rubin B, Cicala MV, et al. Effect of KCNJ5 mutations on gene expression in aldosterone-producing adenomas and adrenocortical cells. J Clin Endocrinol Metab. 2012 Aug. 97(8):E1567-72. [Medline]. [Full Text].

  13. Azizan EA, Lam BY, Newhouse SJ, Zhou J, Kuc RE, Clarke J, et al. Microarray, qPCR, and KCNJ5 sequencing of aldosterone-producing adenomas reveal differences in genotype and phenotype between zona glomerulosa- and zona fasciculata-like tumors. J Clin Endocrinol Metab. 2012 May. 97(5):E819-29. [Medline].

  14. Al-Salameh A, Cohen R, Desailloud R. Overview of the genetic determinants of primary aldosteronism. Appl Clin Genet. 2014. 7:67-79. [Medline]. [Full Text].

  15. Escher G. Hyperaldosteronism in pregnancy. Ther Adv Cardiovasc Dis. 2009 Apr. 3(2):123-32. [Medline].

  16. Fuller PJ. Adrenal Diagnostics: An Endocrinologist's Perspective focused on Hyperaldosteronism. Clin Biochem Rev. 2013 Nov. 34(3):111-6. [Medline]. [Full Text].

  17. Holland OB, Brown H, Kuhnert L, Fairchild C, Risk M, Gomez-Sanchez CE. Further evaluation of saline infusion for the diagnosis of primary aldosteronism. Hypertension. 1984 Sep-Oct. 6(5):717-23. [Medline].

  18. Ignatowska-Switalska H, Chodakowska J, Januszewicz W, Feltynowski T, Adamczyk M, Lewandowski J. Evaluation of plasma aldosterone to plasma renin activity ratio in patients with primary aldosteronism. J Hum Hypertens. 1997 Jun. 11(6):373-8. [Medline].

  19. Galati SJ, Hopkins SM, Cheesman KC, Zhuk RA, Levine AC. Primary aldosteronism: emerging trends. Trends Endocrinol Metab. 2013 Sep. 24(9):421-30. [Medline].

  20. Guichard JL, Clark D 3rd, Calhoun DA, Ahmed MI. Aldosterone receptor antagonists: current perspectives and therapies. Vasc Health Risk Manag. 2013. 9:321-31. [Medline]. [Full Text].

  21. Weiner ID. Endocrine and hypertensive disorders of potassium regulation: primary aldosteronism. Semin Nephrol. 2013 May. 33(3):265-76. [Medline]. [Full Text].

  22. Harvey AM. Hyperaldosteronism: diagnosis, lateralization, and treatment. Surg Clin North Am. 2014 Jun. 94(3):643-56. [Medline].

  23. Rossi GP, Cesari M, Cuspidi C, Maiolino G, Cicala MV, Bisogni V, et al. Long-term control of arterial hypertension and regression of left ventricular hypertrophy with treatment of primary aldosteronism. Hypertension. 2013 Jul. 62(1):62-9. [Medline].

  24. Fourkiotis V, Vonend O, Diederich S, Fischer E, Lang K, Endres S, et al. Effectiveness of eplerenone or spironolactone treatment in preserving renal function in primary aldosteronism. Eur J Endocrinol. 2013 Jan. 168(1):75-81. [Medline].

  25. Kasifoglu T, Akalin A, Cansu DU, Korkmaz C. Hypokalemic paralysis due to primary hyperaldosteronism simulating Gitelman's syndrome. Saudi J Kidney Dis Transpl. 2009 Mar. 20(2):285-7. [Medline].

  26. Künzel HE. Psychopathological symptoms in patients with primary hyperaldosteronism--possible pathways. Horm Metab Res. 2012 Mar. 44(3):202-7. [Medline].

  27. Schmiemann G, Gebhardt K, Hummers-Pradier E, Egidi G. Prevalence of hyperaldosteronism in primary care patients with resistant hypertension. J Am Board Fam Med. 2012 Jan-Feb. 25(1):98-103. [Medline].

  28. Kumar B, Swee M. Aldosterone-renin ratio in the assessment of primary aldosteronism. JAMA. 2014 Jul. 312(2):184-5. [Medline].

  29. Gouli A, Kaltsas G, Tzonou A, Markou A, Androulakis II, Ragkou D, et al. High prevalence of autonomous aldosterone secretion among patients with essential hypertension. Eur J Clin Invest. 2011 Nov. 41(11):1227-36. [Medline].

  30. Lucatello B, Benso A, Tabaro I, Capello E, Caprino MP, Marafetti L, et al. Long-term re-evaluation of primary aldosteronism after medical treatment reveals high proportion of normal mineralocorticoid secretion. Eur J Endocrinol. 2013 Apr. 168(4):525-32. [Medline].

  31. Wu CH, Yang YW, Hu YH, Tsai YC, Kuo KL, Lin YH, et al. Comparison of 24-h urinary aldosterone level and random urinary aldosterone-to-creatinine ratio in the diagnosis of primary aldosteronism. PLoS One. 2013. 8(6):e67417. [Medline]. [Full Text].

  32. Piaditis GP, Kaltsas GA, Androulakis II, Gouli A, Makras P, Papadogias D, et al. High prevalence of autonomous cortisol and aldosterone secretion from adrenal adenomas. Clin Endocrinol (Oxf). 2009 Dec. 71(6):772-8. [Medline].

  33. Gordon RD. Primary aldosteronism. J Endocrinol Invest. 1995 Jul-Aug. 18(7):495-511. [Medline].

  34. Gordon RD, Stowasser M, Klemm SA, Tunny TJ. Primary aldosteronism--some genetic, morphological, and biochemical aspects of subtypes. Steroids. 1995 Jan. 60(1):35-41. [Medline].

  35. Markou A, Pappa T, Kaltsas G, Gouli A, Mitsakis K, Tsounas P, et al. Evidence of primary aldosteronism in a predominantly female cohort of normotensive individuals: a very high odds ratio for progression into arterial hypertension. J Clin Endocrinol Metab. 2013 Apr. 98(4):1409-16. [Medline].

  36. Papanastasiou L, Markou A, Pappa T, Gouli A, Tsounas P, Fountoulakis S, et al. Primary aldosteronism in hypertensive patients: clinical implications and target therapy. Eur J Clin Invest. 2014 Aug. 44(8):697-706. [Medline].

  37. Mussa A, Camilla R, Monticone S, Porta F, Tessaris D, Verna F, et al. Polyuric-polydipsic syndrome in a pediatric case of non-glucocorticoid remediable familial hyperaldosteronism. Endocr J. 2012 Jun 30. 59(6):497-502. [Medline].

  38. Rossi GP, Auchus RJ, Brown M, Lenders JW, Naruse M, Plouin PF, et al. An expert consensus statement on use of adrenal vein sampling for the subtyping of primary aldosteronism. Hypertension. 2014 Jan. 63(1):151-60. [Medline].

  39. Rossitto G, Regolisti G, Rossi E, Negro A, Nicoli D, Casali B, et al. Elevation of angiotensin-II type-1-receptor autoantibodies titer in primary aldosteronism as a result of aldosterone-producing adenoma. Hypertension. 2013 Feb. 61(2):526-33. [Medline].

  40. Spyridonidis TJ, Apostolopoulos DJ. Is there a role for Nuclear Medicine in diagnosis and management of patients with primary aldosteronism?. Hell J Nucl Med. 2013 May-Aug. 16(2):134-9. [Medline].

  41. Feldman RD. Aldosterone and blood pressure regulation: recent milestones on the long and winding road from electrocortin to KCNJ5, GPER, and beyond. Hypertension. 2014 Jan. 63(1):19-21. [Medline].

  42. Scholl UI, Goh G, Stölting G, de Oliveira RC, Choi M, Overton JD, et al. Somatic and germline CACNA1D calcium channel mutations in aldosterone-producing adenomas and primary aldosteronism. Nat Genet. 2013 Sep. 45(9):1050-4. [Medline]. [Full Text].

  43. Cerny MA. Progress towards clinically useful aldosterone synthase inhibitors. Curr Top Med Chem. 2013. 13(12):1385-401. [Medline].

  44. Uppot RN, Gervais DA. Imaging-guided adrenal tumor ablation. AJR Am J Roentgenol. 2013 Jun. 200(6):1226-33. [Medline].

  45. Spence JD. Diagnosis of primary aldosteronism: for medical management, not just surgery. J Hypertens. 2009 Jan. 27(1):204-5; author reply 205. [Medline].

  46. Hu YH, Wu CH, Er LK, Lin CD, Liu YB, Chueh SC, et al. Laparoendoscopic single-site adrenalectomy in patients with primary hyperaldosteronism: A prospective study with long-term follow up. Asian J Surg. 2015 Nov 25. [Medline].

  47. Prejbisz A, Warchoł-Celińska E, Lenders J, Januszewicz A. Cardiovascular Risk in Primary Hyperaldosteronism. Horm Metab Res. 2015 Nov 17. [Medline].

  48. Korah HE, Scholl UI. An Update on Familial Hyperaldosteronism. Horm Metab Res. 2015 Oct 7. [Medline].

 
Previous
Next
 
Steroid biosynthetic pathway.
Physiologic regulation of the renin-angiotensin-aldosterone axis.
Table 1. Factors affecting interpretation of ARR results
False Negative Results
Factor Aldosterone Renin ARR
Medications      
K-sparing diuretics ↑↑
K-wasting diuretics (Non-K-sparing diuretics, such as thiazides, induce renal potassium losses and reduce plasma potassium concentrations, leading to decreased aldosterone secretion.) →↑ ↑↑
ACE inhibitors ↑↑
Angiotensin receptor blockers ↑↑
DHPs (It is a shared opinion that dihydropyridinic calcium channel blockers do not significantly affect aldosterone secretion, mainly causing an increase in PRA, which rarely gives false negatives.) →↓
Other conditions
Hypokalemia →↑
Sodium-restricted diet ↑↑
Pregnancy ↑↑
Renovascular hypertension ↑↑
Malignant hypertension ↑↑
False Positive Results
Beta-adrenergic blockers ↓↓
Central alpha-2 agonists (eg, clonidine, alpha-methyldopa) ↓↓
NSAIDS ↓↓
Other conditions
Potassium loading →↓
Sodium-loaded diet ↓↓
Advancing age ↓↓
Renal dysfunction →↑
PHA-2
Luteal phase of menstrual cycle PRA: Unchanged
Antihypertensive Medications With Minimal Effect on the ARR
Prazosin, doxazosin, terazosin   ←→
Verapamil, hydralazine   ←→
Other medications
Renin inhibitors (Renin inhibitors raise the ARR if renin is measured as PRA [false positive] and lower it if measured as DAR concentration [false negative.]) ↑↓ ↑↓
SSRIs
OCPs (OCPs have little effect on ARR when renin is measured as PRA. Use of immunometric measurements of DAR rather than PRA may give false positive results. Subdermal etonogestrel has no effect on ARR.) ↓DAR
Liddle syndrome Normal
 



ARR, aldosterone-renin ratio; NSAIDs, non-steroidal anti-inflammatory drugs; K, potassium; ACE, angiotensin converting enzyme; ARBs, angiotensin II type 1 receptor blockers; DHPs, dihydropyridines; PHA-2, pseudohypoaldosteronism type 2; PRA, plasma renin activity; DAR, direct active renin; OCPs, oral contraceptive agents; SSRIs, selective serotonin reuptake inhibitors



Table 2. Drugs Used in the Management of Idiopathic Hyperaldosteronism in Children
Drug Class Pediatric Dose
Spironolactone Aldosterone antagonist 0-10 kg: 6.25 mg/dose PO q12h



11-20 kg: 12.5 mg/dose PO q12h



21-40 kg: 25 mg/dose PO q12h



>40 kg: 25 mg PO q8h



Potassium canrenoate Aldosterone antagonist 3-8 mg/kg IV qd; not to exceed 400 mg
Amiloride Potassium-sparing diuretic 0.2 mg/kg q12h
Triamterene Potassium-sparing diuretic 2 mg/kg/dose q8-24h
Nifedipine Dihydropyridine calcium channel antagonist 0.25-0.5 mg/kg PO q6-8h
Amlodipine Calcium channel antagonist 0.05-0.2 mg/ day PO
Doxazosin Alpha1 -specific adrenergic antagonist 0.02-0.1 mg/day; not to exceed 4 mg
Prazosin Alpha1 -specific adrenergic antagonist 0.005 mg/kg test dose, then 0.025-0.1 mg/kg/dose q6h; not to exceed 0.5 mg/dose
Previous
Next
 
 
 
Medscape Consult
 
 
All material on this website is protected by copyright, Copyright © 1994-2016 by WebMD LLC. This website also contains material copyrighted by 3rd parties.