Medscape is available in 5 Language Editions – Choose your Edition here.


Hypophosphatemic Rickets Treatment & Management

  • Author: James CM Chan, MD; Chief Editor: Stephen Kemp, MD, PhD  more...
Updated: Dec 02, 2015

Approach Considerations

Treatment of hypophosphatemic rickets can be safely administered on an outpatient basis, although serum calcium concentrations must be periodically and carefully monitored. Conscientious follow-up is essential.[18]

In children receiving treatment, periodic renal ultrasonography studies are important to monitor for the development of nephrocalcinosis. Originally thought to be a sequela of the disease, this complication is now recognized as an iatrogenic result of therapy. Monitoring the ratio of calcium to creatinine in the urine is also important. A ratio of more than 0.25:1 requires reduction of the vitamin D dosage to avoid nephrocalcinosis. Consult a nephrologist for help treating any patient with possible kidney involvement.

Surgical care

Osteotomy to realign extremely distorted leg curvatures may be necessary for children whose diagnosis was delayed or whose initial treatment was inadequate. Skull deformity may require treatment for synostosis.[19] Spontaneous abscesses often require periodic dental procedures.


If a patient is able, no activity restrictions are needed. Affected individuals obviously should not engage in contact sports until rickets is completely healed.


Pharmacologic Therapy

The usual vitamin D preparations are not useful for treatment in this disorder, because they lack significant 1-alpha-hydroxylase activity. Original treatment protocols advocated vitamin D at levels of 25,000-50,000 U/d (at the lower limit of toxic dosage), which placed the patient in jeopardy of frequent hypercalcemic episodes. Calcitriol is now more widely available and substantially diminishes, but does not eliminate, this risk. Amiloride and hydrochlorothiazide are administered to enhance calcium reabsorption and to reduce the risk of nephrocalcinosis.

Healing of the rachitic changes typically occurs within 6-8 weeks of instituting treatment. During this time, maintain the calcitriol within the recommended dosage to maintain serum calcium and phosphate levels within reference ranges. Monitor these levels weekly over the first 2-3 months of treatment. Urinary calcium and phosphate excretion monitoring also are important.

The patient's requirements for calcium deposition and vitamin D to expedite the healing process diminish as healing progresses; thus, the patient with hypophosphatemic rickets becomes highly susceptible to hypercalcemia during this phase. Consider reducing the calcitriol dosage at this time, guided by the weekly calcium and phosphorus measurements, until a reduced and stable dosage is reached.

Contributor Information and Disclosures

James CM Chan, MD Professor of Pediatrics, Tufts University School of Medicine; Director of Research, The Barbara Bush Children's Hospital, Maine Medical Center

James CM Chan, MD is a member of the following medical societies: American Pediatric Society, Alpha Omega Alpha, American Academy of Pediatrics, American Physiological Society, American Society of Nephrology, American Society of Pediatric Nephrology, International Society of Nephrology

Disclosure: Nothing to disclose.


Karl S Roth, MD Retired Professor and Chair, Department of Pediatrics, Creighton University School of Medicine

Karl S Roth, MD is a member of the following medical societies: Alpha Omega Alpha, American Academy of Pediatrics, American College of Nutrition, American Pediatric Society, American Society for Nutrition, American Society of Nephrology, Association of American Medical Colleges, Medical Society of Virginia, New York Academy of Sciences, Sigma Xi, Society for Pediatric Research, Southern Society for Pediatric Research

Disclosure: Nothing to disclose.

Specialty Editor Board

Mary L Windle, PharmD Adjunct Associate Professor, University of Nebraska Medical Center College of Pharmacy; Editor-in-Chief, Medscape Drug Reference

Disclosure: Nothing to disclose.

George P Chrousos, MD, FAAP, MACP, MACE, FRCP(London) Professor and Chair, First Department of Pediatrics, Athens University Medical School, Aghia Sophia Children's Hospital, Greece; UNESCO Chair on Adolescent Health Care, University of Athens, Greece

George P Chrousos, MD, FAAP, MACP, MACE, FRCP(London) is a member of the following medical societies: American Academy of Pediatrics, American College of Physicians, American Pediatric Society, American Society for Clinical Investigation, Association of American Physicians, Endocrine Society, Pediatric Endocrine Society, Society for Pediatric Research, American College of Endocrinology

Disclosure: Nothing to disclose.

Chief Editor

Stephen Kemp, MD, PhD Former Professor, Department of Pediatrics, Section of Pediatric Endocrinology, University of Arkansas for Medical Sciences College of Medicine, Arkansas Children's Hospital

Stephen Kemp, MD, PhD is a member of the following medical societies: American Academy of Pediatrics, American Association of Clinical Endocrinologists, American Pediatric Society, Endocrine Society, Phi Beta Kappa, Southern Medical Association, Southern Society for Pediatric Research

Disclosure: Nothing to disclose.

Additional Contributors

Arlan L Rosenbloom, MD Adjunct Distinguished Service Professor Emeritus of Pediatrics, University of Florida College of Medicine; Fellow of the American Academy of Pediatrics; Fellow of the American College of Epidemiology

Arlan L Rosenbloom, MD is a member of the following medical societies: American Academy of Pediatrics, American College of Epidemiology, American Pediatric Society, Endocrine Society, Pediatric Endocrine Society, Society for Pediatric Research, Florida Chapter of The American Academy of Pediatrics, Florida Pediatric Society, International Society for Pediatric and Adolescent Diabetes

Disclosure: Nothing to disclose.

  1. Roth KS, Ward RJ, Chan JCM, Sarafoglou K. Disorders of calcium, phosphate and bone metabolism. Sarafoglou K, Hoffmann GF, Roth KS, eds. Pediatric Endocrinology and Inborn Errors of Metabolism. New York, NY: McGraw Hill; 2009. 619-64.

  2. Burckhardt MA, Schifferli A, Krieg AH, Baumhoer D, Szinnai G, Rudin C. Tumor-associated FGF-23-induced hypophosphatemic rickets in children: a case report and review of the literature. Pediatr Nephrol. 2014 Oct 18. [Medline].

  3. Zou M, Bulus D, Al-Rijjal RA, Andiran N, BinEssa H, Kattan WE, et al. Hypophosphatemic rickets caused by a novel splice donor site mutation and activation of two cryptic splice donor sites in the PHEX gene. J Pediatr Endocrinol Metab. 2014 Aug 5. [Medline].

  4. Prié D, Friedlander G. Genetic disorders of renal phosphate transport. N Engl J Med. 2010 Jun 24. 362(25):2399-409. [Medline].

  5. Santos F, Fuente R, Mejia N, Mantecon L, Gil-Peña H, Ordoñez FA. Hypophosphatemia and growth. Pediatr Nephrol. 2013 Apr. 28(4):595-603. [Medline].

  6. Haffner D, Nissel R, Wuhl E, Mehls O. Effects of growth hormone treatment on body proportions and final height among small children with X-linked hypophosphatemic rickets. Pediatrics. 2004 Jun. 113(6):e593-6. [Medline].

  7. Sochett E, Doria AS, Henriques F, et al. Growth and metabolic control during puberty in girls with X-linked hypophosphataemic rickets. Horm Res. 2004. 61(5):252-6. [Medline].

  8. Bastepe M, Jüppner H. Inherited hypophosphatemic disorders in children and the evolving mechanisms of phosphate regulation. Rev Endocr Metab Disord. 2008 Jun. 9 (2):171-80. [Medline].

  9. Baum M, Syal A, Quigley R, Seikaly M. Role of prostaglandins in the pathogenesis of X-linked hypophosphatemia. Pediatr Nephrol. 2006 Aug. 21(8):1067-74. [Medline].

  10. Jehan F, Gaucher C, Nguyen TM, Walrant-Debray O, Lahlou N, Sinding C, et al. Vitamin D receptor genotype in hypophosphatemic rickets as a predictor of growth and response to treatment. J Clin Endocrinol Metab. 2008 Dec. 93 (12):4672-82. [Medline].

  11. Weng C, Chen J, Sun L, Zhou ZW, Feng X, Sun JH, et al. A de novo mosaic mutation of PHEX in a boy with hypophosphatemic rickets. J Hum Genet. 2015 Nov 12. [Medline].

  12. Cho HY, Lee BH, Kang JH, et al. A clinical and molecular genetic study of hypophosphatemic rickets in children. Pediatr Res. 2005 Aug. 58(2):329-33. [Medline].

  13. Bresler D, Bruder J, Mohnike K, et al. Serum MEPE-ASARM-peptides are elevated in X-linked rickets (HYP): implications for phosphaturia and rickets. J Endocrinol. 2004 Dec. 183(3):R1-9. [Medline].

  14. Segawa H, Aranami F, Kaneko I, Tomoe Y, Miyamoto K. The roles of Na/Pi-II transporters in phosphate metabolism. Bone. 2009 Jul. 45 Suppl 1:S2-7. [Medline].

  15. Beck-Nielsen SS, Brock-Jacobsen B, Gram J, Brixen K, Jensen TK. Incidence and prevalence of nutritional and hereditary rickets in southern Denmark. Eur J Endocrinol. 2009 Mar. 160 (3):491-7. [Medline].

  16. Verge CF, Lam A, Simpson JM, Cowell CT, Howard NJ, Silink M. Effects of therapy in X-linked hypophosphatemic rickets. N Engl J Med. 1991 Dec 26. 325(26):1843-8. [Medline].

  17. Alon US, Monzavi R, Lilien M, et al. Hypertension in hypophosphatemic rickets--role of secondary hyperparathyroidism. Pediatr Nephrol. 2003 Feb. 18(2):155-8. [Medline].

  18. Nielsen LH, Rahbek ET, Beck-Nielsen SS, Christesen HT. Treatment of hypophosphataemic rickets in children remains a challenge. Dan Med J. 2014 Jul. 61(7):A4874. [Medline].

  19. Jaszczuk P, Rogers GF, Guzman R, Proctor MR. X-linked hypophosphatemic rickets and sagittal craniosynostosis: three patients requiring operative cranial expansion: case series and literature review. Childs Nerv Syst. 2015 Oct 28. [Medline].

  20. Keskin M, Savaş-Erdeve Ş, Sağsak E, Çetinkaya S, Aycan Z. Risk factors affecting the development of nephrocalcinosis, the most common complication of hypophosphatemic rickets. J Pediatr Endocrinol Metab. 2015 Nov 1. 28 (11-12):1333-7. [Medline].

All material on this website is protected by copyright, Copyright © 1994-2016 by WebMD LLC. This website also contains material copyrighted by 3rd parties.