Solitary Thyroid Nodule Medication

  • Author: Andre Hebra, MD; Chief Editor: Stephen Kemp, MD, PhD  more...
Updated: Apr 28, 2014

Medication Summary

Possible medical therapy includes antithyroid medications, thyroid hormone replacement, and radioiodine ablation. Antithyroid therapy is used to physiologically stabilize the patient before surgical excision of a toxic nodule. Thyroid hormones are necessary postoperatively after thyroidectomy for replacement and suppression of thyroid-stimulating hormone (TSH). Radioiodine ablation may be employed to treat the presence of residual disease and sometimes for suppression of a toxic nodule. Its use requires the cooperation of an experienced specialist. In addition, calcium supplementation may be required in the case of parathyroid complications, whether temporarily or permanently.


Thyroid hormones

Class Summary

Replacement is indicated after thyroidectomy to maintain levels and to prevent TSH stimulation of any remaining cells.

Levothyroxine (Levothroid, Levoxyl, Synthroid, Unithroid)


DOC. Levothyroxine exerts its effect largely after it is deiodinated to tri-iodothyronine at its site of action. In active form, influences growth and maturation of tissues. Involved in normal growth, metabolism, and development.

Liothyronine (Cytomel)


Synthetic form of natural thyroid hormone T3 converted from T4. Duration of activity is short and allows for quick dosage adjustments in event of overdosage. Active form influences growth and maturation of tissues.


Antithyroid agents

Class Summary

These agents are used when treating hot nodules before surgery.

Methimazole (Tapazole)


Inhibits thyroid hormone by blocking oxidation of iodine in thyroid gland. However, it does not inhibit peripheral conversion of thyroid hormone. Gradually taper to minimum dose required to clinically maintain euthyroidism. Caution during pregnancy because it can cause fetal hypothyroidism and has been associated with fetal aplasia cutis.

Propylthiouracil (PTU)


Derivative of thiourea that inhibits organification of iodine by thyroid gland. Blocks oxidation of iodine in thyroid gland, thereby inhibiting thyroid hormone synthesis; inhibits conversion of T4 to T3 (an advantage over other agents). DOC in pregnancy-associated thyrotoxicosis but should be used in lowest effective dose because of risk of hypothyroidism to fetus.


Beta-adrenergic receptor blocking agents

Class Summary

These agents are used to control symptoms from hyperthyroidism. Inhibit chronotropic, inotropic, and vasodilatory responses to beta-adrenergic stimulation.

Propranolol (Inderal)


DOC in treating cardiac arrhythmias resulting from hyperthyroidism. Controls cardiac and psychomotor manifestations within minutes.

Contributor Information and Disclosures

Andre Hebra, MD Chief, Division of Pediatric Surgery, Professor of Surgery and Pediatrics, Medical University of South Carolina College of Medicine; Surgeon-in-Chief, Medical University of South Carolina Children's Hospital

Andre Hebra, MD is a member of the following medical societies: Alpha Omega Alpha, Florida Medical Association, Society of American Gastrointestinal and Endoscopic Surgeons, Children's Oncology Group, International Pediatric Endosurgery Group, American Academy of Pediatrics, American College of Surgeons, American Medical Association, American Pediatric Surgical Association, Society of Laparoendoscopic Surgeons, South Carolina Medical Association, Southeastern Surgical Congress, Southern Medical Association

Disclosure: Nothing to disclose.

Specialty Editor Board

Mary L Windle, PharmD Adjunct Associate Professor, University of Nebraska Medical Center College of Pharmacy; Editor-in-Chief, Medscape Drug Reference

Disclosure: Nothing to disclose.

Lynne Lipton Levitsky, MD Chief, Pediatric Endocrine Unit, Massachusetts General Hospital; Associate Professor of Pediatrics, Harvard Medical School

Lynne Lipton Levitsky, MD is a member of the following medical societies: Alpha Omega Alpha, American Academy of Pediatrics, American Diabetes Association, American Pediatric Society, Endocrine Society, Pediatric Endocrine Society, Society for Pediatric Research

Disclosure: Received grant/research funds from Eli Lilly for pi; Received grant/research funds from NovoNordisk for pi; Received consulting fee from NovoNordisk for consulting; Partner received consulting fee from Onyx Heart Valve for consulting.

Chief Editor

Stephen Kemp, MD, PhD Former Professor, Department of Pediatrics, Section of Pediatric Endocrinology, University of Arkansas for Medical Sciences College of Medicine, Arkansas Children's Hospital

Stephen Kemp, MD, PhD is a member of the following medical societies: American Academy of Pediatrics, American Association of Clinical Endocrinologists, American Pediatric Society, Endocrine Society, Phi Beta Kappa, Southern Medical Association, Southern Society for Pediatric Research

Disclosure: Nothing to disclose.

Additional Contributors

Arlan L Rosenbloom, MD Adjunct Distinguished Service Professor Emeritus of Pediatrics, University of Florida College of Medicine; Fellow of the American Academy of Pediatrics; Fellow of the American College of Epidemiology

Arlan L Rosenbloom, MD is a member of the following medical societies: American Academy of Pediatrics, American College of Epidemiology, American Pediatric Society, Endocrine Society, Pediatric Endocrine Society, Society for Pediatric Research, Florida Chapter of The American Academy of Pediatrics, Florida Pediatric Society, International Society for Pediatric and Adolescent Diabetes

Disclosure: Nothing to disclose.


Melissa Miller, MD Department of Surgery, Medical University of South Carolina College of Medicine

Melissa Miller, MD is a member of the following medical societies: American Medical Association and American Medical Student Association/Foundation

Disclosure: Nothing to disclose.

Patrick B Thomas, MD Fellow, Department of Pediatric Surgery, Texas Children's Hospital

Patrick B Thomas, MD is a member of the following medical societies: American Medical Association and South Carolina Medical Association

Disclosure: Nothing to disclose.

  1. Kihara M, Hirokawa M, Masuoka H, Yabuta T, Shindo H, Higashiyama T, et al. Evaluation of cytologically benign solitary thyroid nodules by ultrasonography: A retrospective analysis of 1877 cases. Auris Nasus Larynx. 2012 Oct 23. [Medline].

  2. Raval MV, Browne M, Chin AC, et al. Total thyroidectomy for benign disease in the pediatric patient--feasible and safe. J Pediatr Surg. 2009 Aug. 44(8):1529-33. [Medline].

  3. Desjardins JG, Khan AH, Montupet P, et al. Management of thyroid nodules in children: a 20-year experience. J Pediatr Surg. 1987 Aug. 22(8):736-9. [Medline].

  4. Hung W, Anderson KD, Chandra RS, et al. Solitary thyroid nodules in 71 children and adolescents. J Pediatr Surg. 1992 Nov. 27(11):1407-9. [Medline].

  5. Hung W. Solitary thyroid nodules in 93 children and adolescents. a 35-years experience. Horm Res. 1999. 52(1):15-8. [Medline].

  6. Chiesa F. Thyroid disease in northern Italian children born around the time of the Chernobyl nuclear accident. Annals of Oncology. 2004. 15:1842-6. [Medline].

  7. Newman KD, Black T, Heller G, Azizkhan RG, Holcomb GW 3rd, Sklar C, et al. Differentiated thyroid cancer: determinants of disease progression in patients 1111111111111111Ann Surg</i>. 1998 Apr. 227(4):533-41. [Medline].

  8. Bouhabel S, Payne RJ, Mlynarek A, Hier M, Caglar D, Tamilia M. Are solitary thyroid nodules more likely to be malignant?. J Otolaryngol Head Neck Surg. 2012 Apr. 41(2):119-23. [Medline].

  9. Fowler CL, Pokorny WJ, Harberg FJ. Thyroid nodules in children: current profile of a changing disease. South Med J. 1989 Dec. 82(12):1472-8. [Medline].

  10. Al-Shaikh A, Ngan B, Daneman A, Daneman D. Fine-needle aspiration biopsy in the management of thyroid nodules in children and adolescents. J Pediatr. 2001 Jan. 138(1):140-2. [Medline].

  11. Lugo-Vicente H, Ortiz VN, Irizarry H, et al. Pediatric thyroid nodules: management in the era of fine needle aspiration. J Pediatr Surg. 1998 Aug. 33(8):1302-5. [Medline].

  12. Millman B, Pellitteri PK. Nodular thyroid disease in children and adolescents. Otolaryngol Head Neck Surg. 1997 Jun. 116(6 Pt 1):604-9. [Medline].

  13. Bentley AA, Gillespie C, Malis D. Evaluation and management of a solitary thyroid nodule in a child. Otolaryngol Clin North Am. 2003 Feb. 36(1):117-28. [Medline].

  14. Bukhari MH. An updated audit of fine needle aspiration cytology procedure of solitary thyroid nodule. Diagn Cytopathol. 2008. 36:104-12. [Medline].

  15. Canadian Pediatric Thyroid Nodule (CaPTN) Study Group. The Canadian Pediatric Thyroid Nodule Study: an evaluation of current management practices. J Pediatr Surg. 2008. 43:826-30. [Medline].

  16. Cotran RS, Kumar V, Robbins SL. The thyroid. Robbins Pathologic Basis of Disease. 5th ed. 1994. 1121-42.

  17. Dreimane D, Varma SK. Common childhood thyroid disorders. Indian J Pediatr. 1997 Jan-Feb. 64(1):3-10. [Medline].

  18. Fisher DA. The thyroid gland. Clinical Paediatric Endocrinology. 1989. 309-37.

  19. Flannery TK, Kirkland JL, Copeland KC, et al. Papillary thyroid cancer: a pediatric perspective. Pediatrics. 1996 Sep. 98(3 Pt 1):464-6. [Medline].

  20. Herrmann MA, Hay ID, Bartelt DH Jr, et al. Cytogenetic and molecular genetic studies of follicular and papillary thyroid cancers. J Clin Invest. 1991 Nov. 88(5):1596-604. [Medline].

  21. [Guideline] Iqbal CW, Wahoff DC. Diagnosis and management of pediatric endocrine neoplasms. Curr Opin Pediatr. 2009 Jun. 21(3):379-85. [Medline].

  22. Loh KC, Greenspan FS, Gee L, et al. Pathological tumor-node-metastasis (pTNM) staging for papillary and follicular thyroid carcinomas: a retrospective analysis of 700 patients. J Clin Endocrinol Metab. 1997 Nov. 82(11):3553-62. [Medline].

  23. Lugo-Vicente H, Ortiz VN. Pediatric thyroid nodules: insights in management. Bol Asoc Med P R. 1998 Apr-Jun. 90(4-6):74-8. [Medline].

  24. Niedziela M. Pathogenesis, diagnosis and management of thyroid nodules in children. Endocr Relat Cancer. 2006. 13:427-53. [Medline].

  25. Sclafani AP, Valdes M, Cho H. Hashimoto's thyroiditis and carcinoma of the thyroid: optimal management. Laryngoscope. 1993 Aug. 103(8):845-9. [Medline].

  26. Stevens C, Lee JK, Sadatsafavi M, Blair GK. Pediatric thyroid fine-needle aspiration cytology: a meta-analysis. J Pediatr Surg. 2009. 44:2184-91.

  27. Stezhko VA, Buglova EE, Danilova LI. A cohort study of thyroid cancer and other thyroid diseases after the Chornobyl accident: objectives, design and methods. Radiat Res. 2004 Apr. 161(4):481-92. [Medline].

  28. Takahashi T, Fujimori K, Simon SL. Thyroid nodules, thyroid function and dietary iodine in the Marshall islands. Int J Epidemiol. 1999 Aug. 28(4):742-9. [Medline].

  29. Tucker ME. Radiofrequency Bests Laser for Ablation of Thyroid Nodules. Medscape Medical News. May 8, 2013. Available at Accessed: May 15, 2013.

  30. Walfish PG, Tseng KH. Thyroid physiology and pathology. Pediatric Endocrinology. 1989. 367-448.

  31. Yip FW, Reeve TS, Poole AG. Thyroid nodules in childhood and adolescence. Aust N Z J Surg. 1994 Oct. 64(10):676-8. [Medline].

A 12-year-old patient with an asymptomatic palpable thyroid nodule noticed upon routine physical examination.
Surgical specimen of a thyroid lobe with papillary carcinoma taken from a 12-year-old patient with an asymptomatic palpable thyroid nodule noticed upon routine physical examination.
Medscape Consult
All material on this website is protected by copyright, Copyright © 1994-2016 by WebMD LLC. This website also contains material copyrighted by 3rd parties.