Medscape is available in 5 Language Editions – Choose your Edition here.


Microvillus Inclusion Disease Clinical Presentation

  • Author: Stefano Guandalini, MD; Chief Editor: Carmen Cuffari, MD  more...
Updated: Jul 17, 2015


Pregnancy and birth are usually normal in individuals with microvillus inclusion disease, and polyhydramnios is usually absent, in contrast to the clinical picture of patients with other causes of congenital secretory diarrhea. However, in some cases polyhydramnios and bowel dilation in the third trimester have been described.[10] In one case, a high fetal alpha-fetoprotein in the second trimester was observed.[11] Authors have speculated that the fetal alpha-fetoprotein elevation might possibly be caused by in utero body fluid leakage into the amniotic fluid through fetal enteropathy.

Severe diarrhea typically appears in the first days of life, usually within the first 72 hours, but a late-onset form is also known, with onset at 6-8 weeks of age. The stools are watery, and the stool output is 100-500 mL/kg/d when the infant is fed, a volume comparable to or higher than that observed in cholera. The diarrhea is of secretory type; therefore, it persists at a stable rate of 50-300 mL/kg/d despite fasting, and the electrolyte content of the stools is increased, without an osmotic gap. However, the mucosal atrophy causes osmotic diarrhea. For this reason, alimentation increases the fecal output. Because of the high output, patients can lose up to 30% of their body weight within 24 hours, resulting in profound metabolic acidosis and severe dehydration.[12]

The infant rapidly becomes dehydrated unless vigorous intravenous rehydration is started.

Microvillus inclusion disease is usually characterized by growth retardation and some developmental delay later in infancy. Associated abnormalities include Meckel diverticula, abdominal adhesions, inguinal hernias, renal dysplasia, an absent corpus callosum, and hydronephrosis. Recently, hepatic adenomas have also been described.[13]

Furthermore, microvillus inclusion disease has been reported in association with Down syndrome and aganglionic megacolon.



The infant appears severely dehydrated. Growth retardation and some developmental delay are usually present. No other specific findings can be detected. However, the disease is associated with other abnormalities, including Meckel diverticulum, mesenteric duct remnants, craniosynostosis, abnormal vertebrae, an absent corpus callosum, and hydronephrosis.



Microvillus inclusion disease is an autosomal recessive disease, the pathogenesis of which is illustrated in the section on pathophysiology.

Contributor Information and Disclosures

Stefano Guandalini, MD Founder and Medical Director, Celiac Disease Center, Chief, Section of Pediatric Gastroenterology, Hepatology and Nutrition, Department of Pediatrics, University of Chicago Medical Center; Professor, Department of Pediatrics, Section of Gastroenterology, Hepatology and Nutrition, University of Chicago Division of the Biological Sciences, The Pritzker School of Medicine

Stefano Guandalini, MD is a member of the following medical societies: American Gastroenterological Association, North American Society for Pediatric Gastroenterology, Hepatology and Nutrition, European Society for Paediatric Gastroenterology, Hepatology & Nutrition, North American Society for the Study of Celiac Disease

Disclosure: Received consulting fee from AbbVie for consulting.


Agostino Nocerino, MD, PhD Chief of Pediatric Oncology, Department of Pediatrics, University of Udine, Italy

Agostino Nocerino, MD, PhD is a member of the following medical societies: American Society of Pediatric Hematology/Oncology, Italian Society of Pediatric Hematology and Oncology, Italian Society of Pediatric Emergency and Urgent Care Medicine, Italian Society of Pediatrics

Disclosure: Nothing to disclose.

Specialty Editor Board

Mary L Windle, PharmD Adjunct Associate Professor, University of Nebraska Medical Center College of Pharmacy; Editor-in-Chief, Medscape Drug Reference

Disclosure: Nothing to disclose.

Chief Editor

Carmen Cuffari, MD Associate Professor, Department of Pediatrics, Division of Gastroenterology/Nutrition, Johns Hopkins University School of Medicine

Carmen Cuffari, MD is a member of the following medical societies: American College of Gastroenterology, American Gastroenterological Association, North American Society for Pediatric Gastroenterology, Hepatology and Nutrition, Royal College of Physicians and Surgeons of Canada

Disclosure: Received honoraria from Prometheus Laboratories for speaking and teaching; Received honoraria from Abbott Nutritionals for speaking and teaching. for: Abbott Nutritional, Abbvie, speakers' bureau.

Additional Contributors

Chris A Liacouras, MD Director of Pediatric Endoscopy, Division of Gastroenterology and Nutrition, Children's Hospital of Philadelphia; Associate Professor of Pediatrics, University of Pennsylvania School of Medicine

Chris A Liacouras, MD is a member of the following medical societies: American Gastroenterological Association

Disclosure: Nothing to disclose.

  1. Davidson GP, Cutz E, Hamilton JR, Gall DG. Familial enteropathy: a syndrome of protracted diarrhea from birth, failure to thrive, and hypoplastic villus atrophy. Gastroenterology. 1978 Nov. 75(5):783-90. [Medline].

  2. Reinshagen K, Naim HY, Zimmer KP. Autophagocytosis of the apical membrane in microvillus inclusion disease. Gut. 2002 Oct. 51(4):514-21. [Medline].

  3. Groisman GM, Sabo E, Meir A, Polak-Charcon S. Enterocyte apoptosis and proliferation are increased in microvillous inclusion disease (familial microvillous atrophy). Hum Pathol. 2000 Nov. 31(11):1404-10. [Medline].

  4. Wiegerinck CL, Janecke AR, Schneeberger K, Vogel GF, van Haaften-Visser DY, Escher JC, et al. Loss of Syntaxin 3 Causes Variant Microvillus Inclusion Disease. Gastroenterology. 2014 Apr 8. [Medline].

  5. Al-Daraji WI, Zelger B, Zelger B, Hussein MR. Microvillous inclusion disease: a clinicopathologic study of 17 cases from the UK. Ultrastruct Pathol. 2010 Dec. 34(6):327-32. [Medline].

  6. van der Velde KJ, Dhekne HS, Swertz MA, Sirigu S, Ropars V, Vinke PC. An overview and online registry of microvillus inclusion disease patients and their MYO5B mutations. Hum Mutat. 2013 Dec. 34(12):1597-605. [Medline].

  7. Herzog D, Atkison P, Grant D, et al. Combined bowel-liver transplantation in an infant with microvillous inclusion disease. J Pediatr Gastroenterol Nutr. 1996 May. 22(4):405-8. [Medline].

  8. Oliva MM, Perman JA, Saavedra JM, et al. Successful intestinal transplantation for microvillus inclusion disease. Gastroenterology. 1994 Mar. 106(3):771-4. [Medline].

  9. Ruemmele FM, Jan D, Lacaille F, et al. New perspectives for children with microvillous inclusion disease: early small bowel transplantation. Transplantation. 2004 Apr 15. 77(7):1024-8. [Medline].

  10. Kennea N, Norbury R, Anderson G, Tekay A. Congenital microvillous inclusion disease presenting as antenatal bowel obstruction. Ultrasound Obstet Gynecol. 2001 Feb. 17(2):172-4. [Medline].

  11. Chen CP, Su YN, Chern SR, Wu PC, Wang W. Prenatal diagnosis of microvillus inclusion disease. Taiwan J Obstet Gynecol. 2011 Sep. 50(3):399-400. [Medline].

  12. Ruemmele FM, Schmitz J, Goulet O. Microvillous inclusion disease (microvillous atrophy). Orphanet J Rare Dis. 2006 Jun 26. 1:22. [Medline].

  13. Burgis JC, Pratt CA, Higgins JP, Kerner JA. Multiple hepatic adenomas in a child with microvillus inclusion disease. Dig Dis Sci. 2013 Oct. 58(10):2784-8. [Medline].

  14. Weeks DA, Zuppan CW, Malott RL, Mierau GW. Microvillous inclusion disease with abundant vermiform, electron-lucent vesicles. Ultrastruct Pathol. 2003 Sep-Oct. 27(5):337-40. [Medline].

  15. Iancu TC, Mahajnah M, Manov I, Shaoul R. Microvillous inclusion disease: ultrastructural variability. Ultrastruct Pathol. 2007 May-Jun. 31(3):173-88. [Medline].

  16. Groisman GM, Amar M, Livne E. CD10: a valuable tool for the light microscopic diagnosis of microvillous inclusion disease (familial microvillous atrophy). Am J Surg Pathol. 2002 Jul. 26(7):902-7. [Medline].

  17. Youssef N, M Ruemmele F, Goulet O, Patey N. [CD10 expression in a case of microvillous inclusion disease]. Ann Pathol. 2004 Dec. 24(6):624-7. [Medline].

  18. Halac U, Lacaille F, Joly F, Hugot JP, Talbotec C, Colomb V, et al. Microvillous inclusion disease: how to improve the prognosis of a severe congenital enterocyte disorder. J Pediatr Gastroenterol Nutr. 2011 Apr. 52(4):460-5. [Medline].

  19. Phillips AD, Schmitz J. Familial microvillous atrophy: a clinicopathological survey of 23 cases. J Pediatr Gastroenterol Nutr. 1992 May. 14(4):380-96. [Medline].

  20. Assmann B, Hoffmann GF, Wagner L, et al. Dihydropyrimidinase deficiency and congenital microvillous atrophy: coincidence or genetic relation?. J Inherit Metab Dis. 1997 Sep. 20(5):681-8. [Medline].

  21. Carruthers L, Dourmashkin R, Phillips A. Disorders of the cytoskeleton of the enterocyte. Clin Gastroenterol. 1986 Jan. 15(1):105-20. [Medline].

  22. Cutz E, Rhoads JM, Drumm B, et al. Microvillus inclusion disease: an inherited defect of brush-border assembly and differentiation. N Engl J Med. 1989 Mar 9. 320(10):646-51. [Medline].

  23. Michail S, Collins JF, Xu H, et al. Abnormal expression of brush-border membrane transporters in the duodenal mucosa of two patients with microvillus inclusion disease. J Pediatr Gastroenterol Nutr. 1998 Nov. 27(5):536-42. [Medline].

  24. Nathavitharana KA, Green NJ, Raafat F, Booth IW. Siblings with microvillous inclusion disease. Arch Dis Child. 1994 Jul. 71(1):71-3. [Medline].

  25. Pecache N, Patole S, Hagan R, et al. Neonatal congenital microvillus atrophy. Postgrad Med J. 2004 Feb. 80(940):80-3. [Medline].

  26. Phillips AD, Brown A, Hicks S, et al. Acetylated sialic acid residues and blood group antigens localise within the epithelium in microvillous atrophy indicating internal accumulation of the glycocalyx. Gut. 2004 Dec. 53(12):1764-71. [Medline].

  27. Phillips AD, Jenkins P, Raafat F, Walker-Smith JA. Congenital microvillous atrophy: specific diagnostic features. Arch Dis Child. 1985 Feb. 60(2):135-40. [Medline].

  28. Phillips AD, Szafranski M, Man LY, Wall WJ. Periodic acid-Schiff staining abnormality in microvillous atrophy: photometric and ultrastructural studies. J Pediatr Gastroenterol Nutr. 2000 Jan. 30(1):34-42. [Medline].

All material on this website is protected by copyright, Copyright © 1994-2016 by WebMD LLC. This website also contains material copyrighted by 3rd parties.