Close
New

Medscape is available in 5 Language Editions – Choose your Edition here.

 

Intestinal Malrotation Workup

  • Author: Denis D Bensard, MD, FACS, FAAP; Chief Editor: Carmen Cuffari, MD  more...
 
Updated: Oct 08, 2015
 

Laboratory Studies

The following studies may help facilitate the diagnosis and guide treatment in patients with suspected intestinal malrotation:

CBC count

An elevated or decreased WBC count may indicate systemic inflammation and/or sepsis.

Thrombocytopenia may indicate a platelet consumptive process (eg, necrotizing enterocolitis); additionally, platelets are an acute phase reactant with thrombocytosis indicating systemic inflammation.

A decreased hemoglobin/hematocrit gives evidence of blood loss, possibly through GI bleeding.

Arterial, capillary, or venous blood gas and lactate

Metabolic acidosis provides evidence for ongoing ischemia as observed with necrotizing enterocolitis or strangulated bowel (volvulus). This is demonstrated on serum laboratory studies with an elevated lactate and/or base deficit

Blood chemistries

Patients with volvulus and resultant bowel ischemia can develop severe metabolic derangements, which should be corrected, if possible, prior to operative intervention.

Ongoing sodium, chloride, and bicarbonate losses can occur through suctioned GI secretions.

Hyperkalemia may occur secondary to metabolic acidosis and hemolysis.

Urinalysis and urine culture

These may be useful to rule out other infectious causes if the differential remains unclear.

Type and screen

A current type and screen must be available because these patients often require emergent operative intervention which may or may not require blood transfusion.

Prothrombin time (PT) and activated partial thromboplastin time (aPTT)

These should be obtained in patients with sepsis, if ongoing blood loss is a concern and prior to operative intervention.

Next

Imaging Studies

The following imaging studies may be helpful in clarifying the diagnosis:

Plain abdominal radiography

Plain radiography has limited use for defining intestinal obstruction. The classic pattern for duodenal obstruction, if present, is the double-bubble sign produced by an enlarged stomach and proximal duodenum with little gas in the remainder of the bowel. Distended bowel loops with or without pneumatosis intestinalis may be seen. If pneumoperitoneum is suspected, a left lateral decubitus film can be obtained to better visualize this process

Upper GI series

Upper GI series is the criterion standard to diagnose intestinal malrotation, with a sensitivity of 93-100%. However, upper GI but should only be obtained in patients who are hemodynamically stable.[22, 23, 24]

Normal rotation is present if the duodenal C-loop crosses the midline and places the duodenojejunal junction to the left of the spine at a level equivalent or superior to the pylorus. If the contrast ends abruptly or tapers in a corkscrew pattern, midgut volvulus or some other form of proximal obstruction may be present. Barium is the contrast of choice in patients who are stable or have chronic symptoms

Contrast studies may not be possible in patients who are actively vomiting or are otherwise unstable and need immediate surgical exploration. Water-soluble agents should be used if the study must be performed prior to emergent operative intervention. See the image below.

In this upper GI series with abnormal results, the In this upper GI series with abnormal results, the duodenum does not cross the midline, and the small bowel is present only in the right side of the abdomen.

In this upper GI series with abnormal results, the duodenum does not cross the midline, and the small bowel is present only in the right side of the abdomen.

Lower GI series (contrast enema)

Occasionally, upper GI series may fail to define the location of the duodenojejunal junction, in which case, a contrast enema may be helpful to identify the location of the cecum.

A normally placed cecum does not unequivocally rule out intestinal malrotation and clinical judgment must be exercised. See the image below.

These 2 lower GI series show the cecum (arrows) in These 2 lower GI series show the cecum (arrows) in the right upper quadrant, indicative of malrotation.

Ultrasonography

Ultrasonography is quickly becoming a useful imaging modality in infants and children with abdominal pain and has been used to accurately diagnose intestinal malrotation with or without midgut volvulus.[25, 26]

In the hands of experienced ultrasonographers, ultrasonography has been shown to have false positive rate of 0% and a false negative rate of 0-30%.[27, 28]

Findings indicative of malrotation include inversion of the superior mesenteric artery (SMA) and the superior mesenteric vein (SMV) and a retroperitoneal position of the duodenum after fluid bolus via a nasogastric tube.[27]

Other diagnostic findings include fixed midline bowel loops and duodenal dilation with distal tapering. The finding of the SMV coiled around the SMA is suggestive of intestinal volvulus The presence of ascites and thickened bowel wall were not found to be statistically significant predictors of malrotation with midgut volvulus

CT scanning

CT scanning is not well developed for diagnosing malrotation and midgut volvulus.

Scattered case reports of its use are noted, but it is not recommended as the principal diagnostic tool.

Previous
Next

Procedures

The following procedures may be helpful:

NG tube insertion

Insert an NG tube in all patients with bilious emesis and suspected malrotation.

Adjust the NG tube to low intermittent suction in order to decompress the bowel proximal to any obstruction that may be present.

Central venous catheter placement

Most patients require long-term intravenous access after surgery, especially if midgut volvulus is present.

Because intravenous nutrition is likely to be necessary, central line access is preferable over peripheral access so that parenteral nutrition can be delivered.

Previous
 
 
Contributor Information and Disclosures
Author

Denis D Bensard, MD, FACS, FAAP Director of Pediatric Surgery and Trauma, Attending Surgeon in Adult and Pediatric Acute Care Surgery, Attending Surgeon in Adult and Pediatric Surgical Critical Care, Denver Health Medical Center; Professor of Surgery, University of Colorado School of Medicine; Associate Program Director, General Surgery Residency, Attending Surgeon, Children's Hospital Colorado

Denis D Bensard, MD, FACS, FAAP is a member of the following medical societies: American Association for the Surgery of Trauma, Alpha Omega Alpha, Society of American Gastrointestinal and Endoscopic Surgeons, Southwestern Surgical Congress, American Academy of Pediatrics, American College of Surgeons, American Pediatric Surgical Association, Association for Academic Surgery, Society of University Surgeons

Disclosure: Nothing to disclose.

Coauthor(s)

Shannon N Acker, MD Resident Physician, Department of Surgery, University of Colorado School of Medicine

Disclosure: Nothing to disclose.

Ann M Kulungowski, MD Assistant Professor of Pediatric Surgery, University of Colorado School of Medicine

Ann M Kulungowski, MD is a member of the following medical societies: American Academy of Pediatrics, American College of Surgeons, American Pediatric Surgical Association

Disclosure: Nothing to disclose.

Specialty Editor Board

Mary L Windle, PharmD Adjunct Associate Professor, University of Nebraska Medical Center College of Pharmacy; Editor-in-Chief, Medscape Drug Reference

Disclosure: Nothing to disclose.

David A Piccoli, MD Chief of Pediatric Gastroenterology, Hepatology and Nutrition, The Children's Hospital of Philadelphia; Professor, University of Pennsylvania School of Medicine

David A Piccoli, MD is a member of the following medical societies: American Association for the Study of Liver Diseases, American Gastroenterological Association, North American Society for Pediatric Gastroenterology, Hepatology and Nutrition

Disclosure: Nothing to disclose.

Chief Editor

Carmen Cuffari, MD Associate Professor, Department of Pediatrics, Division of Gastroenterology/Nutrition, Johns Hopkins University School of Medicine

Carmen Cuffari, MD is a member of the following medical societies: American College of Gastroenterology, American Gastroenterological Association, North American Society for Pediatric Gastroenterology, Hepatology and Nutrition, Royal College of Physicians and Surgeons of Canada

Disclosure: Received honoraria from Prometheus Laboratories for speaking and teaching; Received honoraria from Abbott Nutritionals for speaking and teaching.

Additional Contributors

Jeffrey J Du Bois, MD Chief of Children's Surgical Services, Division of Pediatric Surgery, Kaiser Permanente, Women and Children's Center, Roseville Medical Center

Jeffrey J Du Bois, MD is a member of the following medical societies: Alpha Omega Alpha, American Academy of Pediatrics, American College of Surgeons, American Pediatric Surgical Association, California Medical Association

Disclosure: Nothing to disclose.

Acknowledgements

Robyn Hatley, MD Professor, Departments of Surgery and Pediatrics, Medical College of Georgia

Robyn Hatley, MD is a member of the following medical societies: American Academy of Pediatrics, American College of Surgeons, American Medical Association, and American Pediatric Surgical Association

Disclosure: Nothing to disclose.

Anjali Parish, MD Assistant Professor of Pediatrics, Department of Neonatology, Medical College of Georgia

Anjali Parish, MD is a member of the following medical societies: American Academy of Pediatrics and American Medical Association

Disclosure: Nothing to disclose.

References
  1. Lee HC, Pickard SS, Sridhar S, Dutta S. Intestinal malrotation and catastrophic volvulus in infancy. J Emerg Med. 2012 Jul. 43(1):e49-51. [Medline]. [Full Text].

  2. Zellos A, Zarganis D, Ypsiladis S, Chatzis D, Papaioannou G, Bartsocas C. Malrotation of the intestine and chronic volvulus as a cause of protein-losing enteropathy in infancy. Pediatrics. 2012 Feb. 129(2):e515-8. [Medline].

  3. Mall FP. Development of the human intestine and its position in the adult. 1898. 9:197-208.

  4. Dott NM. Anomalies of intestinal rotation: their embryology and surgical aspects: with report of 5 cases. Br J Surg. 1923. 24:251-286.

  5. Ladd WE. Congenital Obstruction of the Duodenum in Children. N Engl J Med. 1932. 206:277-80.

  6. Warner B. Malrotation. Oldham KT, Colombani PM, Foglia RP, eds. Surgery of Infants and Children: Scientific Principles and Practice. Philadelphia: Lippincott Williams & Wilkins; 1997. 1229.

  7. Dilley AV, Pereira J, Shi EC, Adams S, Kern IB, Currie B. The radiologist says malrotation: does the surgeon operate?. Pediatr Surg Int. 2000. 16(1-2):45-9. [Medline].

  8. Berseth CL. Disorders of the intestines and pancreas. Taeusch WH, Ballard RA, eds. Avery’s Diseases of the Newborn. 7th ed. Philadelphia: WB Saunders; 1998. 918.

  9. Varetti C, Meucci D, Severi F, Di Maggio G, Bocchi C, Petraglia F, et al. Intrauterine volvulus with malrotation: prenatal diagnosis. Minerva Pediatr. 2013 Apr. 65(2):219-23. [Medline].

  10. Smith EI. Malrotation of the intestine. Welch KJ, Randolph JG, Ravitch MN, eds. Pediatric Surgery. 4th ed. St. Louis: MO: Mosby-Year Book; 1986. Vol 2: 882-95.

  11. Glover DM, Barry FM. Intestinal obstruction in the newborn. Ann Surg. 1949 Sep. 130(3):480-511. [Medline].

  12. Messineo A, MacMillan JH, Palder SB, Filler RM. Clinical factors affecting mortality in children with malrotation of the intestine. J Pediatr Surg. 1992 Oct. 27(10):1343-5. [Medline].

  13. Rescorla FJ, Shedd FJ, Grosfeld JL, Vane DW, West KW. Anomalies of intestinal rotation in childhood: analysis of 447 cases. Surgery. 1990 Oct. 108(4):710-5; discussion 715-6. [Medline].

  14. Wallberg SV, Qvist N. Increased risk of complication in acute onset intestinal malrotation. Dan Med J. 2013. 60:A4744.

  15. Nagdeve NG, Qureshi AM, Bhingare PD, Shinde SK. Malrotation beyond infancy. J Pediatr Surg. 2012 Nov. 47(11):2026-32. [Medline].

  16. El-Gohary Y, Alagtal M, Gillick J. Long-term complications following operative intervention for intestinal malrotation: a 10-year review. Pediatr Surg Int. 2010 Feb. 26(2):203-6. [Medline].

  17. Kouwenberg M, Severijnen RS, Kapusta L. Congenital cardiovascular defects in children with intestinal malrotation. Pediatr Surg Int. 2008 Mar. 24(3):257-63. [Medline]. [Full Text].

  18. Nehra D, Goldstein AM. Intestinal malrotation: varied clinical presentation from infancy through adulthood. Surgery. 2011 Mar. 149(3):386-93. [Medline].

  19. Durkin ET, Lund DP, Shaaban AF, Schurr MJ, Weber SM. Age-related difference in diagnosis and morbidity of intestinal malrotation. J Am Coll Surg. 2008. 206:658-663.

  20. Wanjari AK, Deshmukh AJ, Tayde PS, Lonkar Y. Midgut malrotation with chronic abdominal pain. N Am J Med Sci. 2012 Apr. 4(4):196-8. [Medline]. [Full Text].

  21. Spitz L, Orr JD, Harries JT. Obstructive jaundice secondary to chronic midgut volvulus. Arch Dis Child. 1983 May. 58(5):383-5. [Medline].

  22. Applegate KE, Anderson JM, Klatte EC. Intestinal malrotation in children: a problem-solving approach to the upper gastrointestinal series. Radiographics. 2006 Sep-Oct. 26(5):1485-500. [Medline].

  23. Lin JN, Lou CC, Wang KL. Intestinal malrotation and midgut volvulus: a 15-year review. J Formos Med Assoc. 1995 Apr. 94(4):178-81. [Medline].

  24. Sizemore AW, Rabbani KZ, Ladd A, Applegate KE. Diagnostic performance of the upper gastrointestinal series in the evaluation of children with clinically suspected malrotation. Pediatr Radiol. 2008 May. 38(5):518-28. [Medline].

  25. Fonio P, Coppolino F, Russo A, D'Andrea A, Giannattasio A, Reginelli A. Ultrasonography (US) in the assessment of pediatric non traumatic gastrointestinal emergencies. Crit Ultrasound J. 2013 Jul 15. 5 Suppl 1:S12. [Medline].

  26. Alehossein M, Abdi S, Pourgholami M, Naseri M, Salamati P. Diagnostic accuracy of ultrasound in determining the cause of bilious vomiting in neonates. Iran J Radiol. 2012 Nov. 9(4):190-4. [Medline].

  27. Hennessey I, John R, Gent R, Goh DW. Utility of sonographic assessment of the position of the third part of the duodenum using water instillation in intestinal malrotation: a single-center retrospective audit. Pediatr Radiol. 2014 Apr. 44(4):387-91. [Medline].

  28. Quail MA. Question 2. Is Doppler ultrasound superior to upper gastrointestinal contrast study for the diagnosis of malrotation?. Arch Dis Child. 2011 Mar. 96(3):317-8. [Medline].

  29. Dassinger MS, Smith SD. Chapter 86. Disorders of Intestinal Rotation and Fixation. Coran A, Adzick NS, Krummel TM, et al, eds. Pediatric Surgery. 7th ed. Elsevier; 837-51.

  30. Badea R, Al Hajjar N, Andreica V, Procopet B, Caraiani C, Tamas-Szora A. Appendicitis associated with intestinal malrotation: imaging diagnosis features. Case report. Med Ultrason. 2012 Jun. 14(2):164-7. [Medline].

  31. Tsao KJ, St Peter SD, Valusek PA, Keckler SJ, Sharp S, Holcomb GW 3rd. Adhesive small bowel obstruction after appendectomy in children: comparison between the laparoscopic and open approach. J Pediatr Surg. 2007 Jun. 42(6):939-42; discussion 942. [Medline].

  32. Draus JM Jr, Foley DS, Bond SJ. Laparoscopic Ladd procedure: a minimally invasive approach to malrotation without midgut volvulus. Am Surg. 2007 Jul. 73(7):693-6. [Medline].

  33. Palanivelu C, Rangarajan M, Shetty AR, Jani K. Intestinal malrotation with midgut volvulus presenting as acute abdomen in children: value of diagnostic and therapeutic laparoscopy. J Laparoendosc Adv Surg Tech A. 2007 Aug. 17(4):490-2. [Medline].

  34. Stanfill AB, Pearl RH, Kalvakuri K, Wallace LJ, Vegunta RK. Laparoscopic Ladd's procedure: treatment of choice for midgut malrotation in infants and children. J Laparoendosc Adv Surg Tech A. 2010 May. 20(4):369-72. [Medline].

  35. Vassaur J, Vassaur H, Buckley FP 3rd. Single-incision laparoscopic Ladd's procedure for intestinal malrotation. JSLS. 2014 Jan-Mar. 18(1):132-5. [Medline].

  36. Ooms N, Matthyssens LE, Draaisma JM, de Blaauw I, Wijnen MH. Laparoscopic Treatment of Intestinal Malrotation in Children. Eur J Pediatr Surg. 2015 Jun 18. [Medline].

  37. Newman B, Koppolu R, Murphy D, Sylvester K. Heterotaxy syndromes and abnormal bowel rotation. Pediatr Radiol. 2014 May. 44(5):542-51. [Medline].

  38. Pockett CR, Dicken B, Rebeyka IM, Ross DB, Ryerson LM. Heterotaxy syndrome: is a prophylactic Ladd procedure necessary in asymptomatic patients?. Pediatr Cardiol. 2013 Jan. 34(1):59-63. [Medline].

  39. Elsinga RM, Roze E, Van Braeckel KN, Hulscher JB, Bos AF. Motor and cognitive outcome at school age of children with surgically treated intestinal obstructions in the neonatal period. Early Hum Dev. 2013 Mar. 89(3):181-5. [Medline].

  40. El-Gohary Y, Alagtal M, Gillick J. Long-term complications following operative intervention for intestinal malrotation: a 10-year review. Pediatr Surg Int. 2010 Feb. 26(2):203-6. [Medline].

  41. Feitz R, Vos A. Malrotation: the postoperative period. J Pediatr Surg. 1997 Sep. 32(9):1322-4. [Medline].

  42. Ai VH, Lam WW, Cheng W. CT appearance of midgut volvulus with malrotation in a young infant. ClinRadiol. Oct 1999. 54(10):687-9.

  43. Bass KD, Rothenberg SS, Chang JH. Laparoscopic Ladd's procedure in infants with malrotation. J Pediatr Surg. 1998 Feb. 33(2):279-81. [Medline].

  44. Chao HC, Kong MS, Chen JY, Lin SJ, Lin JN. Sonographic features related to volvulus in neonatal intestinal malrotation. J Ultrasound Med. 2000 Jun. 19(6):371-6. [Medline].

  45. Estrada RL. Thomas CC, ed. Anomalies of Intestinal Rotation and Fixation. Springfield, IL: 1958.

  46. Guzzetta PC, Anderson KD, Eichelberger MR. General Surgery. Avery GB, Fletcher MA, MacDonald MG, eds. Neonatology: Pathophysiology and Management of the Newborn. Philadelphia, PA: Lippincott Williams & Wilkins; 1994. 931-2.

  47. Howell CG, Vozza F, Shaw S, Robinson M, Srouji MN, Krasna I. Malrotation, malnutrition, and ischemic bowel disease. J Pediatr Surg. 1982 Oct. 17(5):469-73. [Medline].

  48. Irish MS, Pearl RH, Caty MG, Glick PL. The approach to common abdominal diagnosis in infants and children. Pediatr Clin North Am. 1998 Aug. 45(4):729-72. [Medline].

  49. Janik JS, Ein SH. Normal intestinal rotation with non-fixation: a cause of chronic abdominal pain. J Pediatr Surg. 1979 Dec. 14(6):670-4. [Medline].

  50. Kamal IM. Defusing the intra-abdominal ticking bomb: intestinal malrotation in children. CMAJ. 2000 May 2. 162(9):1315-7. [Medline].

  51. Kullendorff CM, Mikaelsson C, Ivancev K. Malrotation in children with symptoms of gastrointestinal allergy and psychosomatic abdominal pain. Acta Paediatr Scand. 1985 Mar. 74(2):296-9. [Medline].

  52. Kumar D, Brereton RJ, Spitz L, Hall CM. Gastro-oesophageal reflux and intestinal malrotation in children. Br J Surg. 1988 Jun. 75(6):533-5. [Medline].

  53. [Guideline] Ladd WE. Surgical Diseases of the Alimentary Tract in Infants. N Engl J Med. 1936. 215:705-8.

  54. Lee HC, Pickard SS, Sridhar S, Dutta S. Intestinal malrotation and catastrophic volvulus in infancy. J Emerg Med. 2012 Jul. 43(1):e49-51. [Medline]. [Full Text].

  55. Mazziotti MV, Strasberg SM, Langer JC. Intestinal rotation abnormalities without volvulus: the role of laparoscopy. J Am Coll Surg. 1997 Aug. 185(2):172-6. [Medline].

  56. Spigland N, Brandt ML, Yazbeck S. Malrotation presenting beyond the neonatal period. J Pediatr Surg. 1990 Nov. 25(11):1139-42. [Medline].

 
Previous
Next
 
Normal rotation of the intestines during development. The superior mesenteric artery (SMA) is the axis. The duodenojejunal loop (red arrow) begins superior to the SMA, and the cecocolic loop (green arrow) begins inferior to the SMA.
In this upper GI series with abnormal results, the duodenum does not cross the midline, and the small bowel is present only in the right side of the abdomen.
These 2 lower GI series show the cecum (arrows) in the right upper quadrant, indicative of malrotation.
This patient had malrotation with midgut volvulus. The gut is darkened in color because of ischemia.
 
 
 
All material on this website is protected by copyright, Copyright © 1994-2016 by WebMD LLC. This website also contains material copyrighted by 3rd parties.