Close
New

Medscape is available in 5 Language Editions – Choose your Edition here.

 

Lumbosacral Disc Injuries Treatment & Management

  • Author: Robert E Windsor, MD, FAAPMR, FAAEM, FAAPM; Chief Editor: Craig C Young, MD  more...
 
Updated: Oct 12, 2015
 

Acute Phase

Rehabilitation Program

Physical Therapy

Physical therapy for acute radiculopathy should emphasize analgesia through passive modalities, stretching activities, and soft-tissue mobilization initially, and then the therapy should advance to McKenzie-type activities to regain segmental motion. Once segmental activity has been normalized or improved and the patient's pain has been reduced, then the patient may begin a walking program and a progressive lumbar stabilization program. The stabilization program should be steadily advanced, and the patient should have a generalized conditioning program initiated as well.

Surgical Intervention

The treatment of radiculopathy depends upon the pain severity, degree of functional limitation, and neurologic status. Surgical emergencies include cauda equina syndrome and a rapidly progressive neurologic deficit. Relative surgical emergencies include painless weakness with or without numbness, less than antigravity strength, or extreme leg pain that is unresponsive to a selective nerve root block (SNRB). The above clinical scenarios are thought to be biomechanical rather than biochemical in origin; thus, they are amenable to immediate surgical intervention. All other conditions require a minimum of 6-12 weeks of adequate nonsurgical care before the consideration of surgery. Treatment is directed toward alleviating pain.

For those patients with chronic LBP that is unresponsive to nonsurgical management, lumbar fusion remains the surgical procedure of choice.[40] Unfortunately, suboptimal clinical results are obtained by a significant proportion of patients. Lumbar disc arthroplasty has been developed as a potential means to improve the long-term outcome of these patients.[41, 42] Although these devices have had relatively good early clinical results, questions still remain about their long-term efficacy in the maintenance of motion and relief of pain, the life span of the devices, and the results of randomized comparative trials with fusion.

Other Treatment

Early in the care of radiculopathy, interventional procedures may be employed in cases of severe pain, lack of progress, or significant functional impairment. In a position statement, the NASS recommended the use of epidural steroid injections in lumbar radicular pain caused by structural abnormalities such as disc herniation and spinal stenosis.[33, 43] If no improvement occurs, confirmation of the diagnosis is required. MRI is the study of choice, but it is important for the lesion, as seen on MRI, to corroborate with the location of symptoms. In borderline or ambiguous cases, electrodiagnostic testing can be helpful. If the diagnosis remains uncertain, a fluoroscopically guided SNRB may be employed as a diagnostic aid.

Appropriate nonsurgical rehabilitative interventions include oral nonsteroidal anti-inflammatory drugs (NSAIDs), spine-specific physical therapy, avoidance of provocative influences, and a fluoroscopically guided steroid injection. If a comprehensive conservative program fails, an open surgical or other less invasive procedure (chemonucleolysis or percutaneous discectomy) is offered. Long-term analyses have not shown surgical intervention to be superior to a more conservative approach.[44] Less invasive treatments may be successful in up to 80% of persons thought to be appropriate surgical candidates.

Intradiscal electrothermy (IDET) is perhaps one of the newest and most innovative treatments aimed at chronic LBP resulting from IDD. Targeted thermal therapy with the IDET procedure is designed to modify annular collagen, thermocoagulate annular nociceptive nerve fibers, and cauterize ingrowth granulation tissue. These effects promote collagen remodeling and changes in the annular integrity (causes contraction and thickening of the annulus collagen, thereby stabilizing annulus fissures). A study evaluating the outcome after IDET has shown success rates of 70-80% based upon an improvement of 2 points on a 10-point visual analog score (VAS) and sitting tolerance.[45] This procedure has provided an alternative to major spinal surgery in the treatment of chronic LBP related to IDD.

 
 
Contributor Information and Disclosures
Author

Robert E Windsor, MD, FAAPMR, FAAEM, FAAPM President and Director, Georgia Pain Physicians, PC; Clinical Associate Professor, Department of Physical Medicine and Rehabilitation, Emory University School of Medicine

Robert E Windsor, MD, FAAPMR, FAAEM, FAAPM is a member of the following medical societies: American Academy of Pain Medicine, American Academy of Physical Medicine and Rehabilitation, American College of Sports Medicine, American Medical Association, International Association for the Study of Pain, Texas Medical Association

Disclosure: Nothing to disclose.

Coauthor(s)

Kevin P Sullivan, MD Consulting Staff, The Boston Spine Group

Kevin P Sullivan, MD is a member of the following medical societies: American Academy of Physical Medicine and Rehabilitation, North American Spine Society, International Spine Intervention Society

Disclosure: Nothing to disclose.

Erik D Hiester, DO Fellow in Interventional Pain Management, Georgia Pain Physicians, Emory University School of Medicine

Erik D Hiester, DO is a member of the following medical societies: American Academy of Family Physicians, American Medical Association, American Osteopathic Association, American Pain Society

Disclosure: Nothing to disclose.

Specialty Editor Board

Francisco Talavera, PharmD, PhD Adjunct Assistant Professor, University of Nebraska Medical Center College of Pharmacy; Editor-in-Chief, Medscape Drug Reference

Disclosure: Received salary from Medscape for employment. for: Medscape.

Henry T Goitz, MD Academic Chair and Associate Director, Detroit Medical Center Sports Medicine Institute; Director, Education, Research, and Injury Prevention Center; Co-Director, Orthopaedic Sports Medicine Fellowship

Henry T Goitz, MD is a member of the following medical societies: American Academy of Orthopaedic Surgeons, American Orthopaedic Society for Sports Medicine

Disclosure: Nothing to disclose.

Chief Editor

Craig C Young, MD Professor, Departments of Orthopedic Surgery and Community and Family Medicine, Medical Director of Sports Medicine, Medical College of Wisconsin

Craig C Young, MD is a member of the following medical societies: American Academy of Family Physicians, American College of Sports Medicine, American Medical Society for Sports Medicine, Phi Beta Kappa

Disclosure: Nothing to disclose.

Additional Contributors

Andrew D Perron, MD Residency Director, Department of Emergency Medicine, Maine Medical Center

Andrew D Perron, MD is a member of the following medical societies: American College of Emergency Physicians, American College of Sports Medicine, Society for Academic Emergency Medicine

Disclosure: Nothing to disclose.

Acknowledgements

The authors and editors of Medscape Reference gratefully acknowledge the contributions of previous coauthor Dr Dennis P White to the development and writing of this article.

References
  1. Manek NJ, MacGregor AJ. Epidemiology of back disorders: prevalence, risk factors, and prognosis. Curr Opin Rheumatol. 2005 Mar. 17(2):134-40. [Medline].

  2. Frymoyer JW. Epidemiology: the magnitude of the problem. Wiesel SW, ed. The Lumbar Spine. 2nd ed. Philadelphia, Pa: WB Saunders Co; 1996. 8-16.

  3. Bigos SJ, Battie MC. The impact of spinal disorders in industry. Frymoyer JW, ed. The Adult Spine: Principles and Practice. New York, NY: Raven Press; 1991.

  4. Frymoyer JW, Cats-Baril WL. An overview of the incidences and costs of low back pain. Orthop Clin North Am. 1991 Apr. 22(2):263-71. [Medline].

  5. Kirkaldy-Willis WH, ed. The pathology and pathogenesis of low back pain. Managing Low Back Pain. New York, NY: Churchill Livingstone; 1988. 49.

  6. Deyo RA, Tsui-Wu YJ. Descriptive epidemiology of low-back pain and its related medical care in the United States. Spine. 1987 Apr. 12(3):264-8. [Medline].

  7. Saal JS, Franson RC, Dobrow R, et al. High levels of inflammatory phospholipase A2 activity in lumbar disc herniations. Spine. 1990 Jul. 15(7):674-8. [Medline].

  8. Saal JS, Sibley R, Dobrow R, et al. Cellular response to lumbar disc herniation: an immunohistologic study. Presented at: Annual Meeting of the International Society for the Study of the Lumbar Spine; June 1990; Boston, Mass.

  9. Beattie PF. Current understanding of lumbar intervertebral disc degeneration: a review with emphasis upon etiology, pathophysiology, and lumbar magnetic resonance imaging findings. J Orthop Sports Phys Ther. 2008 Jun. 38(6):329-40. [Medline].

  10. Kanemoto M, Hukuda S, Komiya Y, Katsuura A, Nishioka J. Immunohistochemical study of matrix metalloproteinase-3 and tissue inhibitor of metalloproteinase-1 human intervertebral discs. Spine. 1996 Jan 1. 21(1):1-8. [Medline].

  11. Weinstein SM, Herring SA, Derby R. Contemporary concepts in spine care. Epidural steroid injections. Spine. 1995 Aug 15. 20(16):1842-6. [Medline].

  12. Malinsky J. The ontogenenetic development of nerve terminationsin the intervertebral disc of man. Acta anat. 1959. 38:96-113.

  13. Moneta GB, Videman T, Kaivanto K, et al. Reported pain during lumbar discography as a function of anular ruptures and disc degeneration. A re-analysis of 833 discograms. Spine. 1994 Sep 1. 19(17):1968-74. [Medline].

  14. [Guideline] Watters WC 3rd, Resnick DK, Eck JC, Ghogawala Z, Mummaneni PV, Dailey AT, et al. Guideline update for the performance of fusion procedures for degenerative disease of the lumbar spine. Part 13: injection therapies, low-back pain, and lumbar fusion. J Neurosurg Spine. 2014 Jul. 21 (1):79-90. [Medline]. [Full Text].

  15. Kraemer J. Natural course and prognosis of intervertebral disc diseases. International Society for the Study of the Lumbar Spine Seattle, Washington, June 1994. Spine. 1995 Mar 15. 20(6):635-9. [Medline].

  16. Bobechko WP, Hirsch C. Auto-immune response to nucleus pulposus in the rabbit. J Bone Joint Surg Br. 1965 Aug. 47:574-80. [Medline]. [Full Text].

  17. Olmarker K, Nordborg C, Larsson K, Rydevik B. Ultrastructural changes in spinal nerve roots induced by autologous nucleus pulposus. Spine. 1996 Feb 15. 21(4):411-4. [Medline].

  18. Olmarker K, Blomquist J, Strömberg J, et al. Inflammatogenic properties of nucleus pulposus. Spine. 1995 Mar 15. 20(6):665-9. [Medline].

  19. McCarron RF, Wimpee MW, Hudkins PG, Laros GS. The inflammatory effect of nucleus pulposus. A possible element in the pathogenesis of low-back pain. Spine. 1987 Oct. 12(8):760-4. [Medline].

  20. Franson RC, Saal JS, Saal JA. Human disc phospholipase A2 is inflammatory. Spine. 1992 Jun. 17(6 suppl):S129-32. [Medline].

  21. Ozaktay AC, Cavanaugh JM, Blagoev DC, King AI. Phospholipase A2-induced electrophysiologic and histologic changes in rabbit dorsal lumbar spine tissues. Spine. 1995 Dec 15. 20(24):2659-68. [Medline].

  22. Grönblad M, Virri J, Tolonen J, et al. A controlled immunohistochemical study of inflammatory cells in disc herniation tissue. Spine. 1994 Dec 15. 19(24):2744-51. [Medline].

  23. Haro H, Kato T, Komori H, Osada M, Shinomiya K. Vascular endothelial growth factor (VEGF)-induced angiogenesis in herniated disc resorption. J Orthop Res. 2002 May. 20(3):409-15. [Medline].

  24. Doita M, Kanatani T, Harada T, Mizuno K. Immunohistologic study of the ruptured intervertebral disc of the lumbar spine. Spine. 1996 Jan 15. 21(2):235-41. [Medline].

  25. Takahashi H, Suguro T, Okazima Y, et al. Inflammatory cytokines in the herniated disc of the lumbar spine. Spine. 1996 Jan 15. 21(2):218-24. [Medline].

  26. Crock HV. Internal disc disruption. A challenge to disc prolapse fifty years on. Spine. 1986 Jul-Aug. 11(6):650-3. [Medline].

  27. Lindblom K. Diagnostic puncture of intervertebral disks in sciatica. Acta Orthop Scand. 1948. 17:213-39.

  28. Hirsch C. An attempt to diagnose the level of a disc lesion clinically by disc puncture. Acta Orthop Scand. 1948. 18:132-40.

  29. Holt EP Jr. The question of lumbar discography. J Bone Joint Surg Am. 1968 Jun. 50(4):720-6. [Medline]. [Full Text].

  30. Simmons JW, Aprill CN, Dwyer AP, Brodsky AE. A reassessment of Holt's data on: "The question of lumbar discography". Clin Orthop Relat Res. 1988 Dec. 237:120-4. [Medline].

  31. Wiley JJ, Macnab I, Wortzman G. Lumbar discography and its clinical applications. Can J Surg. 1968 Jul. 11(3):280-9. [Medline].

  32. Walsh TR, Weinstein JN, Spratt KF, Lehmann TR, Aprill C, Sayre H. Lumbar discography in normal subjects. A controlled, prospective study. J Bone Joint Surg Am. 1990 Aug. 72(7):1081-8. [Medline]. [Full Text].

  33. Guyer RD, Ohnmeiss DD. Lumbar discography. Position statement from the North American Spine Society Diagnostic and Therapeutic Committee. Spine. 1995 Sep 15. 20(18):2048-59. [Medline].

  34. Sachs BL, Vanharanta H, Spivey MA, et al. Dallas discogram description. A new classification of CT/discography in low-back disorders. Spine. 1987 Apr. 12(3):287-94. [Medline].

  35. Aprill C, Bogduk N. High-intensity zone: a diagnostic sign of painful lumbar disc on magnetic resonance imaging. Br J Radiol. 1992 May. 65(773):361-9. [Medline].

  36. Schellhas KP, Pollei SR, Gundry CR, Heithoff KB. Lumbar disc high-intensity zone. Correlation of magnetic resonance imaging and discography. Spine. 1996 Jan 1. 21(1):79-86. [Medline].

  37. Gundry CR, Fritts HM. Magnetic resonance imaging of the musculoskeletal system. Part 8. The spine, section 2. Clin Orthop Relat Res. 1997 Oct. 343:260-71. [Medline].

  38. Ricketson R, Simmons JW, Hauser BO. The prolapsed intervertebral disc. The high-intensity zone with discography correlation. Spine. 1996 Dec 1. 21(23):2758-62. [Medline].

  39. Smith BM, Hurwitz EL, Solsberg D, et al. Interobserver reliability of detecting lumbar intervertebral disc high-intensity zone on magnetic resonance imaging and association of high-intensity zone with pain and anular disruption. Spine. 1998 Oct 1. 23(19):2074-80. [Medline].

  40. [Guideline] Wang JC, Dailey AT, Mummaneni PV, Ghogawala Z, Resnick DK, Watters WC 3rd, et al. Guideline update for the performance of fusion procedures for degenerative disease of the lumbar spine. Part 8: lumbar fusion for disc herniation and radiculopathy. J Neurosurg Spine. 2014 Jul. 21 (1):48-53. [Medline]. [Full Text].

  41. German JW, Foley KT. Disc arthroplasty in the management of the painful lumbar motion segment. Spine. 2005 Aug 15. 30(16 suppl):S60-7. [Medline].

  42. Gamradt SC, Wang JC. Lumbar disc arthroplasty. Spine J. 2005 Jan-Feb. 5(1):95-103. [Medline].

  43. Krych AJ, Richman D, Drakos M, Weiss L, Barnes R, Cammisa F, et al. Epidural steroid injection for lumbar disc herniation in NFL athletes. Med Sci Sports Exerc. 2012 Feb. 44(2):193-8. [Medline].

  44. Peul WC, van den Hout WB, Brand R, Thomeer RT, Koes BW. Prolonged conservative care versus early surgery in patients with sciatica caused by lumbar disc herniation: two year results of a randomised controlled trial. BMJ. 2008 Jun 14. 336(7657):1355-8. [Medline]. [Full Text].

  45. Saal JS, Saal JA. Management of chronic discogenic low back pain with a thermal intradiscal catheter. A preliminary report. Spine. 2000 Feb 1. 25(3):382-8. [Medline].

  46. Iwamoto J, Sato Y, Takeda T, Matsumoto H. The return to sports activity after conservative or surgical treatment in athletes with lumbar disc herniation. Am J Phys Med Rehabil. 2010 Dec. 89(12):1030-5. [Medline].

  47. Hsu WK, McCarthy KJ, Savage JW, Roberts DW, Roc GC, Micev AJ, et al. The Professional Athlete Spine Initiative: outcomes after lumbar disc herniation in 342 elite professional athletes. Spine J. 2011 Mar. 11(3):180-6. [Medline].

  48. [Guideline] Ghogawala Z, Resnick DK, Watters WC 3rd, Mummaneni PV, Dailey AT, Choudhri TF, et al. Guideline update for the performance of fusion procedures for degenerative disease of the lumbar spine. Part 2: assessment of functional outcome following lumbar fusion. J Neurosurg Spine. 2014 Jul. 21 (1):7-13. [Medline]. [Full Text].

  49. Andersson GB. Epidemiologic aspects on low-back pain in industry. Spine. 1981 Jan-Feb. 6(1):53-60. [Medline].

  50. Andersson GB, Brown MD, Dvorak J, et al. Consensus summary of the diagnosis and treatment of lumbar disc herniation. Spine. 1996 Dec 15. 21(24 suppl):75S-78S. [Medline].

  51. Brown KR, Pollintine P, Adams MA. Biomechanical implications of degenerative joint disease in the apophyseal joints of human thoracic and lumbar vertebrae. Am J Phys Anthropol. 2008 Jul. 136(3):318-26. [Medline].

  52. Fardon D, Pinkerton S, Balderston R, et al. Terms used for diagnosis by English speaking spine surgeons. Spine. 1993 Feb. 18(2):274-7. [Medline].

  53. Garfin SR, Rydevik B, Lind B, Massie J. Spinal nerve root compression. Spine. 1995 Aug 15. 20(16):1810-20. [Medline].

  54. Garfin SR, Rydevik BL, Brown RA. Compressive neuropathy of spinal nerve roots. A mechanical or biological problem?. Spine. 1991 Feb. 16(2):162-6. [Medline].

  55. Habtemariam A, Grönblad M, Virri J, et al. Immunocytochemical localization of immunoglobulins in disc herniations. Spine. 1996 Aug 15. 21(16):1864-9. [Medline].

  56. Jensen MC, Brant-Zawadzki MN, Obuchowski N, et al. Magnetic resonance imaging of the lumbar spine in people without back pain. N Engl J Med. 1994 Jul 14. 331(2):69-73. [Medline]. [Full Text].

  57. Kuslich SD, Ulstrom CL, Michael CJ. The tissue origin of low back pain and sciatica: a report of pain response to tissue stimulation during operations on the lumbar spine using local anesthesia. Orthop Clin North Am. 1991 Apr. 22(2):181-7. [Medline].

  58. Lotan R, Oron A, Anekstein Y, Shalmon E, Mirovsky Y. Lumbar stenosis and systemic diseases: is there any relevance?. J Spinal Disord Tech. 2008 Jun. 21(4):247-51. [Medline].

  59. Nguyen CM, Ho KC, Yu SW, Haughton VM, Strandt JA. An experimental model to study contrast enhancement in MR imaging of the intervertebral disk. AJNR Am J Neuroradiol. 1989 Jul-Aug. 10(4):811-4. [Medline].

  60. Palmgren T, Grönblad M, Virri J, et al. Immunohistochemical demonstration of sensory and autonomic nerve terminals in herniated lumbar disc tissue. Spine. 1996 Jun 1. 21(11):1301-6. [Medline].

  61. Ross JS, Modic MT, Masaryk TJ. Tears of the anulus fibrosus: assessment with Gd-DTPA-enhanced MR imaging. AJNR Am J Neuroradiol. 1989 Nov-Dec. 10(6):1251-4. [Medline].

  62. Slipman C, Sawchuck TC. Discogenic pain: state of art reviews. Phys Med Rehab. 1999. 13:601-24.

  63. Takahashi H, Suguro T, Okazima Y, et al. Inflammatory cytokines in the herniated disc of the lumbar spine. Spine. 1996 Jan 15. 21(2):218-24. [Medline].

  64. Troup JD, Martin JW, Lloyd DC. Back pain in industry. A prospective survey. Spine. 1981 Jan-Feb. 6(1):61-9. [Medline].

  65. Von Korff M, Saunders K. The course of back pain in primary care. Spine. 1996 Dec 15. 21(24):2833-7; discussion 2838-9. [Medline].

  66. [Guideline] Eck JC, Sharan A, Resnick DK, Watters WC 3rd, Ghogawala Z, Dailey AT, et al. Guideline update for the performance of fusion procedures for degenerative disease of the lumbar spine. Part 6: discography for patient selection. J Neurosurg Spine. 2014 Jul. 21 (1):37-41. [Medline]. [Full Text].

 
Previous
Next
 
 
 
 
All material on this website is protected by copyright, Copyright © 1994-2016 by WebMD LLC. This website also contains material copyrighted by 3rd parties.