Close
New

Medscape is available in 5 Language Editions – Choose your Edition here.

 

Genetics of Menkes Kinky Hair Disease Follow-up

  • Author: Stephen G Kaler, MD, MPH; Chief Editor: Maria Descartes, MD  more...
 
Updated: Sep 08, 2015
 

Further Outpatient Care

Several points can be made concerning the general care of patients with Menkes kinky hair disease (MKHD) and their families.

Genetic counseling is a very important element. As an X-linked recessive trait, the Menkes gene is transmitted by asymptomatic females who are carriers to 50% of their male offspring (who are affected) and to 50% of their female offspring (who are gene carriers). Conversely, 50% of both male and female offspring are healthy. Thus, the overall risk of a child with Menkes kinky hair disease for a woman who is a documented female carrier is 1 in 4 (25%) for each pregnancy (ie, 1 in 2 chance that the sex is male, multiplied times the 1 in 2 chance that the male inherits the Menkes gene). Offer counseling, carrier testing, and, if indicated, prenatal diagnosis to female relatives of a documented gene carrier.

Concerning pediatric immunizations in infants with Menkes kinky hair disease, no specific contraindications are noted, now that the pertussis component is acellular. Seasonal vaccination against influenza is recommended.

Prophylaxis against urinary tract infections (eg, Bactrim at 2 mg/kg orally every day) is warranted in patients with bladder diverticula.

Physical and/or occupational therapy is useful stimulation and can maximize developmental attainment in patients with Menkes kinky hair disease. Such therapy is tailored to the specific child based on his level of neurologic function. Aspects of physical and/or occupational therapy can also be taught to parents for application in the home.

Menkes kinky hair disease has a substantial emotional impact on the family, and psychosocial support often can be valuable. Just as no health is as vibrant as that of a child, no sickness is as dramatic. Parents of patients with Menkes kinky hair disease often have the pain of watching the transition from apparent good health to essentially irrevocable illness within the first several months of life. Anger, disbelief, guilt, and anxiety regarding an uncertain future are common reactions. Concerning the latter, no reliable way to predict the life span of children with Menkes kinky hair disease is known; however, most of these children die by the time they are aged 3 years. Pneumonia leading to respiratory failure is a common cause of death, although some patients with Menkes kinky hair disease die suddenly in the absence of any acute medical process.

Next

Deterrence/Prevention

Genetic counseling and prenatal diagnosis (when available and desired) can be helpful in preventing Menkes kinky hair disease. However, an estimated one third of all incidents of Menkes kinky hair disease result from new mutations. Guidelines for prenatal screening and diagnosis have been established.[16]

Reliable prenatal diagnosis of Menkes kinky hair disease on biochemical grounds has been offered by the John F. Kennedy Institute in Glostrup, Denmark, for nearly 25 years. This testing is indicated for pregnancies in known or suspected female carriers. Carrier status must be suspected in a woman and her female relatives (mother, sisters, daughters) following the diagnosis of Menkes kinky hair disease in a son. Recurrence risk in future pregnancies of such women may be as high as 25%.

Abnormal egress of radiolabeled copper in cultured amniocytes (reduced compared to normal, ie, a higher percentage of copper retained by cells) was the basis of the original prenatal testing. When techniques for obtaining fetal tissue earlier in gestation (ie, chorionic villus sampling) became available, diagnostic criteria derived from analysis of those tissues were developed (elevated copper content and abnormal copper egress in cultured chorionic cells). In using chorionic villus copper content as the marker, avoiding contamination from the instrument used to obtain the sample or from incomplete separation of the maternal decidua is necessary. The most reliable biochemical marker using chorionic villus specimens has been retention of radiolabeled copper in cultured chorionic cells after a 20-hour pulse and 24-hour chase. Knowledge of the gene for Menkes kinky hair disease enables prenatal testing by molecular means for families in which the proband's mutation has been characterized.

Previous
 
Contributor Information and Disclosures
Author

Stephen G Kaler, MD, MPH Head, Unit On Pediatric Genetics, Laboratory of Clinical Genomics and Clinical Director, Intramural Research Program, National Institute of Child Health & Human Development (NICHD), National Institutes of Health

Disclosure: Nothing to disclose.

Specialty Editor Board

Mary L Windle, PharmD Adjunct Associate Professor, University of Nebraska Medical Center College of Pharmacy; Editor-in-Chief, Medscape Drug Reference

Disclosure: Nothing to disclose.

Margaret M McGovern, MD, PhD Professor and Chair of Pediatrics, Stony Brook University School of Medicine

Margaret M McGovern, MD, PhD is a member of the following medical societies: American Academy of Pediatrics, American Society of Human Genetics

Disclosure: Nothing to disclose.

Chief Editor

Maria Descartes, MD Professor, Department of Human Genetics and Department of Pediatrics, University of Alabama at Birmingham School of Medicine

Maria Descartes, MD is a member of the following medical societies: American Academy of Pediatrics, American College of Medical Genetics and Genomics, American Medical Association, American Society of Human Genetics, Society for Inherited Metabolic Disorders, International Skeletal Dysplasia Society, Southeastern Regional Genetics Group

Disclosure: Nothing to disclose.

Additional Contributors

Christian J Renner, MD Consulting Staff, Department of Pediatrics, University Hospital for Children and Adolescents, Erlangen, Germany

Disclosure: Nothing to disclose.

Acknowledgements

I thank deeply the patients and families who have participated in our clinical trials and the members of my Section for their hard work and dedication to the aims of our laboratory.

References
  1. Møller LB, Hicks JD, Holmes CS, Goldstein DS, Brendl C, Huppke P, et al. Diagnosis of copper transport disorders. Curr Protoc Hum Genet. 2011 Jul. Chapter 17:Unit17.9. [Medline]. [Full Text].

  2. Kim YH, Lee R, Yoo HW, Yum MS, Bae SH, Chung SC, et al. Identification of a novel mutation in the ATP7A gene in a Korean patient with Menkes disease. J Korean Med Sci. 2011 Jul. 26(7):951-3. [Medline]. [Full Text].

  3. Datta AK, Ghosh T, Nayak K, Ghosh M. Menkes kinky hair disease: A case report. Cases J. 2008 Sep 18. 1(1):158. [Medline].

  4. Aldecoa V, Escofet-Soteras C, Artuch R, Ormazabal A, Gabau-Vila E, Martin-Martinez C. [Menkes disease: its clinical, biochemical and molecular diagnosis]. Rev Neurol. 2008 Apr 1-15. 46(7):446-7. [Medline].

  5. Danks DM, Campbell PE, Walker-Smith J, et al. Menkes' kinky-hair syndrome. Lancet. 1972 May 20. 1(7760):1100-2. [Medline].

  6. Danks DM, Cartwright E, Stevens BJ, Townley RR. Menkes' kinky hair disease: further definition of the defect in copper transport. Science. 1973 Mar 16. 179(78):1140-2. [Medline].

  7. Menkes JHM, Alter M, Steigleder GK. A sex-linked recessive disorder with retardation of growth, peculiar hair and focal cerebellar degeneration. Pediatrics. 1962. 29:764-769.

  8. Chelly J, Tumer Z, Tonnesen T, et al. Isolation of a candidate gene for Menkes disease that encodes a potential heavy metal binding protein. Nat Genet. 1993 Jan. 3(1):14-9. [Medline].

  9. Baerlocher K, Nadal D. [Menkes syndrome]. Ergeb Inn Med Kinderheilkd. 1988. 57:77-144. [Medline].

  10. Kaler SG. Menkes disease. Adv Pediatr. 1994. 41:263-304. [Medline].

  11. Kaler SG, Tang J, Donsante A, Kaneski CR. Translational read-through of a nonsense mutation in ATP7A impacts treatment outcome in Menkes disease. Ann Neurol. 2009 Jan. 65(1):108-13. [Medline].

  12. Donsante A, Yi L, Zerfas PM, Brinster LR, Sullivan P, Goldstein DS, et al. ATP7A gene addition to the choroid plexus results in long-term rescue of the lethal copper transport defect in a Menkes disease mouse model. Mol Ther. 2011 Dec. 19(12):2114-23. [Medline]. [Full Text].

  13. Sato R, Okutani K, Higashi T, Satou M, Fujimoto K, Okazaki K. [Case report : respiratory care for anesthesia in a patient with Menkes syndrome and micrognathia]. Masui. 2009 Jan. 58(1):103-5. [Medline].

  14. Passariello M, Almenrader N, Pietropaoli P. Anesthesia for a child with Menkes disease. Paediatr Anaesth. 2008 Dec. 18(12):1225-6. [Medline].

  15. Yamashita J, Yamakage M, Kawana S, Namiki A. Two cases of Menkes disease: airway management and dental fragility. Anaesth Intensive Care. 2009 Mar. 37(2):332-3. [Medline].

  16. [Guideline] Cunniff C. Prenatal screening and diagnosis for pediatricians. Pediatrics. 2004 Sep. 114(3):889-94. [Medline].

  17. Amaravadi R, Glerum DM, Tzagoloff A. Isolation of a cDNA encoding the human homolog of COX17, a yeast gene essential for mitochondrial copper recruitment. Hum Genet. 1997 Mar. 99(3):329-33. [Medline].

  18. Bennetts HW, Chapman FE. Copper deficiency in sheep in Western Australia: a preliminary account of the aetiology of enzootic ataxia of lambs and an anemia of ewes. Aust Vet J. 1937. 13:138-49.

  19. Camakaris J, Voskoboinik I, Mercer JF. Molecular mechanisms of copper homeostasis. Biochem Biophys Res Commun. 1999 Aug 2. 261(2):225-32. [Medline].

  20. Francis MJ, Jones EE, Levy ER, et al. A Golgi localization signal identified in the Menkes recombinant protein. Hum Mol Genet. 1998 Aug. 7(8):1245-52. [Medline].

  21. Grange DK, Kaler SG, Albers GM, et al. Severe bilateral panlobular emphysema and pulmonary arterial hypoplasia: unusual manifestations of Menkes disease. Am J Med Genet A. 2005 Dec 1. 139(2):151-5. [Medline].

  22. Guitet M, Campistol J, Medina M. [Menkes disease: experience in copper salts therapy]. Rev Neurol. 1999 Jul 16-31. 29(2):127-30. [Medline].

  23. Kaler SG. ATP7A-related copper transport diseases-emerging concepts and future trends. Nat Rev Neurol. 2011 Jan. 7(1):15-29. [Medline].

  24. Kaler SG. Diagnosis and therapy of Menkes syndrome, a genetic form of copper deficiency. Am J Clin Nutr. 1998 May. 67(5 Suppl):1029S-1034S. [Medline].

  25. Kaler SG. Menkes disease mutations and response to early copper histidine treatment. Nat Genet. 1996 May. 13(1):21-2. [Medline].

  26. Kaler SG. Metabolic and molecular bases of Menkes disease and occipital horn syndrome. Pediatr Dev Pathol. 1998 Jan-Feb. 1(1):85-98. [Medline].

  27. Kaler SG, Buist NR, Holmes CS, et al. Early copper therapy in classic Menkes disease patients with a novel splicing mutation. Ann Neurol. 1995 Dec. 38(6):921-8. [Medline].

  28. Kaler SG, Das S, Levinson B, et al. Successful early copper therapy in menkes disease associated with a mutant transcript containing a small In-frame deletion. Biochem Mol Med. 1996 Feb. 57(1):37-46. [Medline].

  29. Kaler SG, Gahl WA, Berry SA, et al. Predictive value of plasma catecholamine levels in neonatal detection of Menkes disease. J Inherit Metab Dis. 1993. 16(5):907-8. [Medline].

  30. Kaler SG, Gallo LK, Proud VK, et al. Occipital horn syndrome and a mild Menkes phenotype associated with splice site mutations at the MNK locus. Nat Genet. 1994 Oct. 8(2):195-202. [Medline].

  31. Kaler SG, Goldstein DS, Holmes C, et al. Plasma and cerebrospinal fluid neurochemical pattern in Menkes disease. Ann Neurol. 1993 Feb. 33(2):171-5. [Medline].

  32. Kaler SG, Holmes CS, Goldstein DS, Tang J, Godwin SC, Donsante A, et al. Neonatal diagnosis and treatment of Menkes disease. N Engl J Med. 2008 Feb 7. 358(6):605-14. [Medline]. [Full Text].

  33. Kaler SG, Schwartz JP. Expression of the Menkes disease homolog in rodent neuroglial cells. Neurosci Res Commun. 1998. 23:61-66.

  34. Kaler SG, Tumer Z. Prenatal diagnosis of Menkes disease. Prenat Diagn. 1998 Mar. 18(3):287-9. [Medline].

  35. Klomp LW, Lin SJ, Yuan DS et al. Identification and functional expression of HAH1, a novel human gene involved in copper homeostasis. J Biol Chem. 1997 Apr 4. 272(14):9221-6. [Medline].

  36. Kodama H, Murata Y, Kobayashi M. Clinical manifestations and treatment of Menkes disease and its variants. Pediatr Int. 1999 Aug. 41(4):423-9. [Medline].

  37. La Fontaine SL, Firth SD, Camakaris J, et al. Correction of the copper transport defect of Menkes patient fibroblasts by expression of the Menkes and Wilson ATPases. J Biol Chem. 1998 Nov 20. 273(47):31375-80. [Medline].

  38. Levinson B, Conant R, Schnur R, et al. A repeated element in the regulatory region of the MNK gene and its deletion in a patient with occipital horn syndrome. Hum Mol Genet. 1996 Nov. 5(11):1737-42. [Medline].

  39. Mercer JF, Livingston J, Hall B, et al. Isolation of a partial candidate gene for Menkes disease by positional cloning. Nat Genet. 1993 Jan. 3(1):20-5. [Medline].

  40. Moller LB, Tumer Z, Lund C, et al. Similar splice-site mutations of the ATP7A gene lead to different phenotypes: classical Menkes disease or occipital horn syndrome. Am J Hum Genet. 2000 Apr. 66(4):1211-20. [Medline].

  41. Payne AS, Gitlin JD. Functional expression of the menkes disease protein reveals common biochemical mechanisms among the copper-transporting P-type ATPases. J Biol Chem. 1998 Feb 6. 273(6):3765-70. [Medline].

  42. Petris MJ, Mercer JF. The Menkes protein (ATP7A; MNK) cycles via the plasma membrane both in basal and elevated extracellular copper using a C-terminal di-leucine endocytic signal. Hum Mol Genet. 1999 Oct. 8(11):2107-15. [Medline].

  43. Petris MJ, Mercer JF, Camakaris J. The cell biology of the Menkes disease protein. Adv Exp Med Biol. 1999. 448:53-66. [Medline].

  44. Petris MJ, Strausak D, Mercer JF. The Menkes copper transporter is required for the activation of tyrosinase. Hum Mol Genet. 2000 Nov 22. 9(19):2845-51. [Medline].

  45. Prohaska JR, Tamura T, Percy AK, Turnlund JR. In vitro copper stimulation of plasma peptidylglycine alpha-amidating monooxygenase in Menkes disease variant with occipital horns. Pediatr Res. 1997 Dec. 42(6):862-5. [Medline].

  46. Pufahl RA, Singer CP, Peariso KL, et al. Metal ion chaperone function of the soluble Cu(I) receptor Atx1. Science. 1997 Oct 31. 278(5339):853-6. [Medline].

  47. Robertson D, Goldberg MR, Onrot J, et al. Isolated failure of autonomic noradrenergic neurotransmission. Evidence for impaired beta-hydroxylation of dopamine. N Engl J Med. 1986 Jun 5. 314(23):1494-7. [Medline].

  48. Sarkar B, Lingertat-Walsh K, Clarke JT. Copper-histidine therapy for Menkes disease. J Pediatr. 1993 Nov. 123(5):828-30. [Medline].

  49. Schaefer M, Gitlin JD. Genetic disorders of membrane transport. IV. Wilson's disease and Menkes disease. Am J Physiol. 1999 Feb. 276(2 Pt 1):G311-4. [Medline].

  50. Sheela SR, Latha M, Liu P, et al. Copper-replacement treatment for symptomatic Menkes disease: ethical considerations. Clin Genet. 2005 Sep. 68(3):278-83. [Medline].

  51. Suzuki M, Gitlin JD. Intracellular localization of the Menkes and Wilson's disease proteins and their role in intracellular copper transport. Pediatr Int. 1999 Aug. 41(4):436-42. [Medline].

  52. Tumer Z, Horn N, Tonnesen T, et al. Early copper-histidine treatment for Menkes disease. Nat Genet. 1996 Jan. 12(1):11-3. [Medline].

  53. Tumer Z, Lund C, Tolshave J, et al. Identification of point mutations in 41 unrelated patients affected with Menkes disease. Am J Hum Genet. 1997 Jan. 60(1):63-71. [Medline].

  54. Tumer Z, Moller LB, Horn N. Mutation spectrum of ATP7A, the gene defective in Menkes disease. Adv Exp Med Biol. 1999. 448:83-95. [Medline].

  55. Valentine JS, Gralla EB. Delivering copper inside yeast and human cells. Science. 1997 Oct 31. 278(5339):817-8. [Medline].

  56. Voskoboinik I, Strausak D, Greenough M, et al. Functional analysis of the N-terminal CXXC metal-binding motifs in the human menkes copper-transporting P-type ATPase expressed in cultured mammalian cells. J Biol Chem. 1999 Jul 30. 274(31):22008-12. [Medline].

  57. Vulpe C, Levinson B, Whitney S, et al. Isolation of a candidate gene for Menkes disease and evidence that it encodes a copper-transporting ATPase. Nat Genet. 1993 Jan. 3(1):7-13. [Medline].

 
Previous
Next
 
Classic Menkes kinky hair disease in an 8-month-old male infant. Note the abnormal hair, eyelid ptosis, and jowly facial appearance.
Adolescent patient with typical occipital horn syndrome. Note elbow dislocations and genu valgum. Radiographs exhibited bilateral occipital exostoses of the skull and club-shaped distal clavicles.
Successfully treated classic Menkes kinky hair disease. Diagnosis at birth enabled copper therapy to begin when the infant was aged 8 days. The child walked independently when aged 14 months. This patient's mutation (IVS8,AS,dup5) was associated with a transcript harboring a small in-frame deletion, potentially encoding a functional copper adenosine triphosphatase (ATPase).
Menkes kinky hair disease copper adenosine triphosphatase (see text for detailed discussion).
 
 
 
All material on this website is protected by copyright, Copyright © 1994-2016 by WebMD LLC. This website also contains material copyrighted by 3rd parties.