Medscape is available in 5 Language Editions – Choose your Edition here.


Metachromatic Leukodystrophy Follow-up

  • Author: Alan K Ikeda, MD; Chief Editor: Luis O Rohena, MD  more...
Updated: Aug 21, 2014

Further Outpatient Care

Follow-up evaluation and treatment are often needed. A physical therapist, occupational therapist, orthopedist, ophthalmologist, neuropsychologist, and other specialists may be involved.


Inpatient & Outpatient Medications

Medications are used to provide supportive care or symptomatic relief rather than to treat the underlying cause.



Referral or transfer to a major medical center with experience in treating inherited neurodegenerative and metabolic disorders in a multidisciplinary setting is highly recommended.



Genetic counseling is important to inform the family regarding the risk of occurrence in future pregnancies. Metachromatic leukodystrophy (MLD) is transmitted as an autosomal-recessive trait. Multiple genetic mutations have been implicated as causes of this disorder. Available methods of prenatal testing should be discussed. Tests for a deficiency in enzyme activity in amniocytes or amniotic chorionic villi and gene deletion analysis may be available.



See Treatment and Age.


Patient Education

Numerous resources are available to families.

The MLD Foundation is the world's largest MLD-focused organization and serves hundreds of families across the globe.

The National Organization for Rare Disorders (NORD) Web site includes a page titled Leukodystrophy, Metachromatic, and the National Tay-Sachs and Allied Diseases Association may provide useful information.

The National Institute of Neurological Disorders and Stroke Web site includes a page titled the NINDS Metachromatic Leukodystrophy Information Page.

The United Leukodystrophy Foundation is a nonprofit voluntary health organization dedicated to providing patients and their families with information regarding MLD and to identifying resources for families.

A limited list of current clinical trials for many diseases can be found at, which is a Web site maintained by the National Institutes of Health.

Contributor Information and Disclosures

Alan K Ikeda, MD Interim Medical Director, Director of Oncology, Children's Specialty Center of Las Vegas

Alan K Ikeda, MD is a member of the following medical societies: American Academy of Pediatrics, American Society of Pediatric Hematology/Oncology, American Society for Blood and Marrow Transplantation

Disclosure: Nothing to disclose.


Robert D Steiner, MD Chief Medical Officer, Acer Therapeutics; Clinical Professor, University of Wisconsin School of Medicine and Public Health

Robert D Steiner, MD is a member of the following medical societies: American Academy of Pediatrics, American Association for the Advancement of Science, American College of Medical Genetics and Genomics, American Society of Human Genetics, Society for Inherited Metabolic Disorders, Society for Pediatric Research, Society for the Study of Inborn Errors of Metabolism

Disclosure: Serve(d) as a director, officer, partner, employee, advisor, consultant or trustee for: Acer Therapeutics; Retrophin; Raptor Pharma; Veritas Genetics; Censa Pharma<br/>Received income in an amount equal to or greater than $250 from: Acer Therapeutics; Retrophin; Raptor Pharma; Censa Pharma.

Theodore Moore, MD, MS Professor and Chief, Department of Pediatrics, Division of Pediatric Hematology/Oncology, Director of Pediatric Blood and Marrow Transplant Program, University of California, Los Angeles, David Geffen School of Medicine

Theodore Moore, MD, MS is a member of the following medical societies: American Society of Pediatric Hematology/Oncology, Society for Pediatric Research, American Society for Blood and Marrow Transplantation, Western Society for Pediatric Research, American Society of Hematology

Disclosure: Nothing to disclose.

Specialty Editor Board

Mary L Windle, PharmD Adjunct Associate Professor, University of Nebraska Medical Center College of Pharmacy; Editor-in-Chief, Medscape Drug Reference

Disclosure: Nothing to disclose.

David Flannery, MD, FAAP, FACMG Vice Chair of Education, Chief, Section of Medical Genetics, Professor, Department of Pediatrics, Medical College of Georgia

David Flannery, MD, FAAP, FACMG is a member of the following medical societies: American Academy of Pediatrics, American College of Medical Genetics and Genomics

Disclosure: Nothing to disclose.

Chief Editor

Luis O Rohena, MD Chief, Medical Genetics, San Antonio Military Medical Center; Assistant Professor of Pediatrics, Uniformed Services University of the Health Sciences, F Edward Hebert School of Medicine; Assistant Professor of Pediatrics, University of Texas Health Science Center at San Antonio

Luis O Rohena, MD is a member of the following medical societies: American Academy of Pediatrics, American Chemical Society, American College of Medical Genetics and Genomics, American Society of Human Genetics

Disclosure: Nothing to disclose.

Additional Contributors

Karl S Roth, MD Retired Professor and Chair, Department of Pediatrics, Creighton University School of Medicine

Karl S Roth, MD is a member of the following medical societies: Alpha Omega Alpha, American Academy of Pediatrics, American College of Nutrition, American Pediatric Society, American Society for Nutrition, American Society of Nephrology, Association of American Medical Colleges, Medical Society of Virginia, New York Academy of Sciences, Sigma Xi, Society for Pediatric Research, Southern Society for Pediatric Research

Disclosure: Nothing to disclose.

  1. Gieselmann V, Krägeloh-Mann I. Metachromatic leukodystrophy--an update. Neuropediatrics. 2010 Feb. 41(1):1-6. [Medline].

  2. Anlar B, Waye JS, Eng B. Atypical clinical course in juvenile metachromatic leukodystrophy involving novel arylsulfatase A gene mutations. Dev Med Child Neurol. 2006 May. 48(5):383-7. [Medline].

  3. von Figura K, Gieselman V, Jaeken J. Metachromatic leukodystrophy. Scriver C, Beadet A, Valle D, Sly W, et al, eds. The Metabolic and Molecular Bases of Inherited Disease. 8th ed. McGraw-Hill Professional; 2001.

  4. Estrov Y, Scaglia F, Bodamer OA. Psychiatric symptoms of inherited metabolic disease. J Inherit Metab Dis. 2000 Feb. 23(1):2-6. [Medline].

  5. Fukutani Y, Noriki Y, Sasaki K, et al. Adult-type metachromatic leukodystrophy with a compound heterozygote mutation showing character change and dementia. Psychiatry Clin Neurosci. 1999 Jun. 53(3):425-8. [Medline].

  6. Meikle PJ, Grasby DJ, Dean CJ. Newborn screening for lysosomal storage disorders. Mol Genet Metab. 2006 Aug. 88(4):307-14. [Medline].

  7. Faerber EN, Melvin J, Smergel EM. MRI appearances of metachromatic leukodystrophy. Pediatr Radiol. 1999 Sep. 29(9):669-72. [Medline].

  8. Krivit W. Allogeneic stem cell transplantation for the treatment of lysosomal and peroxisomal metabolic diseases. Springer Semin Immun. 2004. 26:119-132. [Medline].

  9. Martin PL, Carter SL, Kernan NA. Results of the cord blood transplantation study (COBLT): outcomes of unrelated donor umbilical cord blood transplantation in pediatric patients with lysosomal and peroxisomal storage diseases. Biol Blood Marrow Transplant. 2006 Feb. 12(2):184-94. [Medline].

  10. Consiglio A, Quattrini A, Martino S, et al. In vivo gene therapy of metachromatic leukodystrophy by lentiviral vectors: correction of neuropathology and protection against learning impairments in affected mice. Nat Med. 2001 Mar. 7(3):310-6. [Medline].

  11. Matzner U, Habetha M, Gieselmann V. Retrovirally expressed human arylsulfatase A corrects the metabolic defect of arylsulfatase A-deficient mouse cells. Gene Ther. 2000 May. 7(9):805-12. [Medline].

  12. Kawabata K, Migita M, Mochizuki H. Ex vivo cell-mediated gene therapy for metachromatic leukodystrophy using neurospheres. Brain Res. 2006 Jun 13. 1094(1):13-23. [Medline].

  13. Biffi A, Montini E, Lorioli L, Cesani M, Fumagalli F, Plati T. Lentiviral hematopoietic stem cell gene therapy benefits metachromatic leukodystrophy. Science. 2013 Aug 23. 341(6148):1233158. [Medline].

  14. Matzner U, Herbst E, Hedayati K, et al. Enzyme replacement improves nervous system pathology and function in a mouse model for metachromatic leukodystrophy. Hum Mol Genet. 2005 May. 14(9):1139-1152. [Medline].

  15. Givogri MI, Galbiati F, Fasano S. Oligodendroglial progenitor cell therapy limits central neurological deficits in mice with metachromatic leukodystrophy. J Neurosci. 2006 Mar 22. 26(12):3109-19. [Medline].

  16. Alessandri MG, De Vito G, Fornai F. Increased prevalence of pervasive developmental disorders in children with slight arylsulfatase A deficiency. Brain Dev. 2002 Oct. 24(7):688-92. [Medline].

  17. Hernandez-Palazon J. Anaesthetic management in children with metachromatic leukodystrophy. Paediatr Anaesth. 2003 Oct. 13(8):733-4. [Medline].

  18. Sevin C, Aubourg P, Cartier N. Enzyme, cell and gene-based therapies for metachromatic leukodystrophy. J Inherit Metab Dis. 2007 Apr. 30(2):175-83. [Medline].

Table 1. Characteristics of the 4 Forms of Metachromatic Leukodystrophy
Form Age at





Frequency Neurocognitive


Progression Effect of Bone



Late infantile < 4 Autosomal


Most common Motor milestones lost,

neurocognitive functions lost

Death within 5-6 y Not helpful in

symptomatic patients;

may halt cognitive

deterioration in

asymptomatic patients

Early juvenile 4-6 Autosomal


Less common Motor milestones lost,

learning and behavior


Death within

10-15 y

May be beneficial in symptomatic and asymptomatic patients
Late juvenile 6-16 Autosomal


Rare Personality changes,

behavioral changes,

dementia, psychoses,

decreased school or

work performance

Slow May be beneficial in asymptomatic or mildly symptomatic patients
Adult >16 Autosomal


Rare Personality changes,

behavioral changes,

dementia, psychoses,

decreased school or

work performance

Slow May be beneficial in asymptomatic or mildly symptomatic patients
All material on this website is protected by copyright, Copyright © 1994-2016 by WebMD LLC. This website also contains material copyrighted by 3rd parties.