Close
New

Medscape is available in 5 Language Editions – Choose your Edition here.

 

Pediatric Autoimmune and Chronic Benign Neutropenia

  • Author: Susumu Inoue, MD; Chief Editor: Max J Coppes, MD, PhD, MBA  more...
 
Updated: Oct 09, 2015
 

Background

The most common type of chronic neutropenia in pediatric patients is chronic benign neutropenia of childhood, ie, neutropenia lasting over 6 months. Chronic benign neutropenia can be regarded as a synonym for autoimmune neutropenia (primary autoimmune neutropenia [AIN]) in children.

The most common form of neutropenia in infants and young children is transient neutropenia with or following a viral illness. It resolves itself within 2 weeks. If it lasts longer than that, or the child is very ill, then a full workup for neutropenia is in order.

The definition of neutropenia in infants is different from that in adults. In infants aged 2 weeks to 1 year, the lower limit of the normal neutrophil count is 1000/µL. After the first year of life, the lower limit is 1500/µL, as in adults.

The mean age at diagnosis of autoimmune neutropenia is 6-12 months, with a range of 3-30 months. Spontaneous recovery occurs by age 5 years, and the mean duration of neutropenia is approximately 20 months.

Go to Neutropenia for complete information on this topic.

Primary and secondary autoimmune neutropenia

Autoimmune neutropenia is either primary or secondary. In primary autoimmune neutropenia, neutropenia is the only abnormality. Infections associated with the primary form are usually limited and mild.[1]

In secondary autoimmune neutropenia, other primary pathologies occur, including systemic autoimmune disease, infections, and malignancy. Autoimmune neutropenia that occurs in the older pediatric age group and adolescents must be regarded as a totally distinct entity separate from chronic benign neutropenia (AIN). The clinical course of the secondary autoimmune neutropenia is not benign. In infants, secondary autoimmune neutropenia is extremely rare.

A case of secondary autoimmune neutropenia. This p A case of secondary autoimmune neutropenia. This patient presented with recurrent otitis and areas of cellulitis in the diaper area. Pseudomonas aeruginosa and Staphylococcus aureus were isolated from the skin lesions. Autoimmune hemolytic anemia and autoimmune neutropenia were confirmed based on the presence of autoantibodies. The patient has a mutation on exon 15, A504T, which changed an asparagine residue to a valine residue.

Older children, adolescents, and young adults predominantly develop secondary autoimmune neutropenia, and autoimmune hemolytic anemia or immune thrombocytopenia often occur later or at the same time. Antiphospholipid antibody syndrome is common, and ultimately, systemic lupus, Felty syndrome, Sjögren syndrome, and/or a lupuslike illness predominate. Therefore, in this age group, a rigorous search for evidence of other autoimmune phenomena should be made.

Next

Etiology

Lalezari and colleagues demonstrated neutrophil antibodies in 119 of 121 infants and children with chronic neutropenia, thereby establishing the autoimmune nature of the disease.[2] In the study, all patients had at one time an absolute neutrophil count of less than 500/µL (see the Absolute Neutrophil Count calculator).

AIN is similar to immune thrombocytopenic purpura (ITP) of young children, a more common cytopenia in children. ITP is believed to be triggered by a viral infection and, in some individuals, by immunization. Whether autoimmune neutropenia is commonly triggered by similar etiologies is not known. A similar age group is affected, and recovery is expected in both. Some studies have shown an association with parvovirus B19 infection. Recently, Nakamura et al showed deficiencies in regulatory T cell (CD4+, CD25+) in children with autoimmune neutropenia.[3] Thus, it may be a phenomenon of physiologically delayed maturation of immune regulation.

When identified in AIN, antibodies most commonly include immunoglobulin G (IgG) antibodies against neutrophil glycosylated isoforms of FC gamma RIIIb (or CD 16b) and human neutrophil antigen 1 (HNA1) and, less commonly, against HNA4, which are linked to the plasma membrane via a glycosylphosphatidylinositol anchor.

The human neutrophil antigen (HNA) system consists of HNA-1 through HNA-5. Of these, most common antibodies are directed against HNA-1, which consists of NA-1, NA-2, and SH. They are not anti–human leukocyte antigen (HLA) antibodies. Anti-HLA antibodies may be present, but it is very rarely the cause of AIN.

Bruin et al demonstrated that in patients with AIN, antibodies were exclusively directed against the NA alloantigens, whereas in patients with secondary autoimmune neutropenia, antibodies had pan-FC gamma RIIIb specificity.[4] though other researchers have shown that at the outset of AIN, antibodies against FCγRIIIb may be present (see below).

Bone marrow examination findings are variable and not diagnostic. Bone marrow may be normal, show late-stage maturation arrest, be hyperplastic, or be hypoplastic. In rare cases, granulocyte phagocytosis has been reported.[5]

In a study by Perdikogianni et al, circulating granulocyte colony-stimulating factor (G-CSF) levels (serum or plasma) were found to be normal, even during the neutropenic period, except when patients had infections.[6] On the other hand, Kobayashi et al found that the patient’s sera contained mildly but significantly elevated concentration of G-CSF compared with the control sera.[7]

Previous
Next

Epidemiology

The incidence of autoimmune neutropenia does not vary among different ethnic populations.

A Scottish study estimated that in the Scottish population, the incidence of autoimmune neutropenia is 1 in 100,000 children per year.[8] This may have been an underestimate, however, because laboratory tests are not usually performed in most cases of autoimmune neutropenia.

Autoimmune neutropenia has a slight preponderance in girls in one study,[2] but not in others.[9] The mean age at diagnosis of autoimmune neutropenia is 6-12 months, with a range of 3-30 months.

A high frequency of benign neutropenia is widely recognized in African Americans, Yemenite and Falasha Jews, Black Beduin, blacks of South African extraction, Ethiopians, West Indians, Arab Jordanians, and various tribal groups inhabiting the United Arab Emirates.[10] The gene responsible for this ethnic neutropenia is now identified to be DARC (Duffy antigen/receptor chemokine gene), although the exact mechanism that causes neutropenia is still to be elucidated.[11, 12] In the age group (6 months to 3 years) when autoimmune neutropenia is common, it may be impossible to distinguish these 2 entities in a given child.

Morbidity

Infections associated with AIN, which, as previously mentioned, are usually limited and mild, include just fever, otitis media, upper respiratory tract infection, common colds, viral gastroenteritis, skin infection, stomatitis, and gingivitis. Sepsis and pneumonia are rare. In a study done at St Jude Children’s Research Hospital on children with all types of chronic neutropenia, otolaryngological infections predominated, consisting of recurrent otitis media (81%), viral upper respiratory tract infection (67%), oral ulcers or gingivitis (53%), tonsillitis (39%), and sinusitis (37%).[13]

A case of secondary autoimmune neutropenia. This p A case of secondary autoimmune neutropenia. This patient presented with recurrent otitis and areas of cellulitis in the diaper area. Pseudomonas aeruginosa and Staphylococcus aureus were isolated from the skin lesions. Autoimmune hemolytic anemia and autoimmune neutropenia were confirmed based on the presence of autoantibodies. The patient has a mutation on exon 15, A504T, which changed an asparagine residue to a valine residue.

This is in contrast to severe, life-threatening infections (quite often systemic) experienced by infants with severe congenital neutropenia (Kostmann disease and other types), children with aplastic anemia, or children with neutropenia who are receiving chemotherapy.

The reasons for this difference between primary autoimmune and severe congenital neutropenia may be related to the fact that individuals with autoimmune neutropenia have an adequate bone marrow neutrophil reserve and can therefore mount some level of neutrophil response to an infection, even though these neutrophils are rapidly destroyed; this is in contrast to patients with poor or no bone marrow reserve.

In a study of infections in 73 children with neutropenia, Fioredda et al reported a rate of 0.66 infections per patient with AIN (compared with 5.75 infections per patient with severe congenital neutropenia).[14] This figure for AIN may be an overestimate, however, since may have been a selection bias, in that the neutropenia registry used in the study contained more severly affected AIN patients.

Although febrile illnesses appear to be more common in children with AIN than in healthy children, AIN usually does not affect the child's growth and development, although some exceptions occur. (See History.)

Previous
Next

Prognosis

The prognosis is excellent. The condition usually lasts only 2-3 years before spontaneous resolution, and virtually all patients recover by age 5 years.

Spontaneous recovery after 6-24 months is typical. If it persists beyond age 4-5 years, consider other diagnoses. It is important to follow these patients into recovery for this reason.

Previous
Next

Patient Education

Thoroughly discussing the natural history with the patient’s parents and/or caregivers is important, since this can prevent undue anxiety created by low neutrophil counts.

In addition, because medical advice is usually sought after infections have occurred in a child with autoimmune neutropenia, discussing the condition’s natural history validates the experience of the parents and/or caregivers and, in turn, increases their confidence in the physician's diagnosis and treatment.

It is important for patients to maintain good dental hygiene in order to prevent gingivitis, stomatitis, and other mucous membrane infections of the mouth.

Previous
 
 
Contributor Information and Disclosures
Author

Susumu Inoue, MD Professor of Pediatrics and Human Development, Michigan State University College of Human Medicine; Clinical Professor of Pediatrics, Wayne State University School of Medicine; Director of Pediatric Hematology/Oncology, Associate Director of Pediatric Education, Department of Pediatrics, Hurley Medical Center

Susumu Inoue, MD is a member of the following medical societies: American Academy of Pediatrics, American Society of Clinical Oncology, American Society of Hematology, American Society of Pediatric Hematology/Oncology, Society for Pediatric Research

Disclosure: Nothing to disclose.

Specialty Editor Board

Mary L Windle, PharmD Adjunct Associate Professor, University of Nebraska Medical Center College of Pharmacy; Editor-in-Chief, Medscape Drug Reference

Disclosure: Nothing to disclose.

Gary D Crouch, MD Associate Professor, Program Director of Pediatric Hematology-Oncology Fellowship, Department of Pediatrics, Uniformed Services University of the Health Sciences

Gary D Crouch, MD is a member of the following medical societies: American Academy of Pediatrics, American Society of Hematology

Disclosure: Nothing to disclose.

Chief Editor

Max J Coppes, MD, PhD, MBA Executive Vice President, Chief Medical and Academic Officer, Renown Heath

Max J Coppes, MD, PhD, MBA is a member of the following medical societies: American College of Healthcare Executives, American Society of Pediatric Hematology/Oncology, Society for Pediatric Research

Disclosure: Nothing to disclose.

Acknowledgements

Gary R Jones, MD Associate Medical Director, Clinical Development, Berlex Laboratories

Gary R Jones, MD is a member of the following medical societies: American Academy of Pediatrics, American Society of Pediatric Hematology/Oncology, and Western Society for Pediatric Research

Disclosure: Nothing to disclose.

References
  1. Farruggia P, Dufour C. Diagnosis and management of primary autoimmune neutropenia in children: insights for clinicians. Ther Adv Hematol. 2015 Feb. 6 (1):15-24. [Medline].

  2. Lalezari P, Khorshidi M, Petrosova M. Autoimmune neutropenia of infancy. J Pediatr. 1986 Nov. 109(5):764-9. [Medline].

  3. Nakamura K, Miki M, Mizoguchi Y, Karakawa S, Sato T, Kobayashi M. Deficiency of regulatory T cells in children with autoimmune neutropenia. Br J Haematol. 2009 Jun. 145(5):642-7. [Medline].

  4. Bruin MC, von dem Borne AE, Tamminga RY, Kleijer M, Buddelmeijer L, de Haas M. Neutrophil antibody specificity in different types of childhood autoimmune neutropenia. Blood. 1999 Sep 1. 94(5):1797-802. [Medline].

  5. Urban C, Lackner H, Sovinz P, Beham-Schmid C. Intramedullary aggregation and phagocytosis of neutrophils in chronic benign neutropenia of childhood. Br J Haematol. 2008 Aug. 142(4):504. [Medline].

  6. Perdikogianni Ch, Dimitriou H, Stiakaki E, Markaki EA, Kalmanti M. Adhesion molecules, endogenous granulocyte colony-stimulating factor levels and replating capacity of progenitors in autoimmune neutropenia of childhood. Acta Paediatr. 2003 Nov. 92(11):1277-83. [Medline].

  7. Kobayashi M, Ueda K, Kojima S, Nishihira H, Ishiguro A, Shimbo T. Serum granulocyte colony-stimulating factor levels in patients with chronic neutropenia of childhood: modulation of G-CSF levels by myeloid precursor cell mass. Br J Haematol. 1999 May. 105(2):486-90. [Medline].

  8. Lyall EG, Lucas GF, Eden OB. Autoimmune neutropenia of infancy. J Clin Pathol. 1992 May. 45(5):431-4. [Medline]. [Full Text].

  9. Sella R, Flomenblit L, Goldstein I, Kaplinsky C. Detection of anti-neutrophil antibodies in autoimmune neutropenia of infancy: a multicenter study. Isr Med Assoc J. 2010 Feb. 12(2):91-6. [Medline].

  10. Denic S, Showqi S, Klein C, Takala M, Nagelkerke N, Agarwal MM. Prevalence, phenotype and inheritance of benign neutropenia in Arabs. BMC Blood Disord. 2009 Mar 27. 9:3. [Medline]. [Full Text].

  11. Grann VR, Ziv E, Joseph CK, Neugut AI, Wei Y, Jacobson JS. Duffy (Fy), DARC, and neutropenia among women from the United States, Europe and the Caribbean. Br J Haematol. 2008 Oct. 143(2):288-93. [Medline].

  12. Sella R, Flomenblit L, Goldstein I, Kaplinsky C. Detection of anti-neutrophil antibodies in autoimmune neutropenia of infancy: a multicenter study. Isr Med Assoc J. 2010 Feb. 12(2):91-6. [Medline].

  13. Shete M, Thompson JW, Naidu SI, Stocks RM, Wang WC. Olaryngologic manifestations in children with chronic neutropenia. Int J Pediatr Otorhinolaryngol. 2012 Mar. 76(3):392-5. [Medline].

  14. Fioredda F, Calvillo M, Burlando O, et al. Infectious complications in children with severe congenital, autoimmune or idiopathic neutropenia: a retrospective study from the Italian Neutropenia Registry. Pediatr Infect Dis J. 2013 Apr. 32 (4):410-2. [Medline].

  15. Lindqvist H, Carlsson G, Moell J, Winiarski J, Sundin M. Neutropenia in childhood: a 5-year experience at a tertiary center. Eur J Pediatr. 2015 Jun. 174 (6):801-7. [Medline].

  16. Vlacha V, Feketea G. The clinical significance of non-malignant neutropenia in hospitalized children. Ann Hematol. 2007 Dec. 86(12):865-70. [Medline].

  17. Hsieh MM, Everhart JE, Byrd-Holt DD, Tisdale JF, Rodgers GP. Prevalence of neutropenia in the U.S. population: age, sex, smoking status, and ethnic differences. Ann Intern Med. 2007 Apr 3. 146(7):486-92. [Medline].

  18. Bux J, Behrens G, Jaeger G, Welte K. Diagnosis and clinical course of autoimmune neutropenia in infancy: analysis of 240 cases. Blood. 1998 Jan 1. 91(1):181-6. [Medline].

  19. Audrain M, Martin J, Fromont P, Prie N, Thomas C, Muller EJ. Autoimmune neutropenia in children: analysis of 116 cases. Pediatr Allergy Immunol. 2011 Aug. 22(5):494-6. [Medline].

  20. Bruin M, Dassen A, Pajkrt D, Buddelmeyer L, Kuijpers T, de Haas M. Primary autoimmune neutropenia in children: a study of neutrophil antibodies and clinical course. Vox Sang. 2005 Jan. 88(1):52-9. [Medline].

 
Previous
Next
 
A case of secondary autoimmune neutropenia. This patient presented with recurrent otitis and areas of cellulitis in the diaper area. Pseudomonas aeruginosa and Staphylococcus aureus were isolated from the skin lesions. Autoimmune hemolytic anemia and autoimmune neutropenia were confirmed based on the presence of autoantibodies. The patient has a mutation on exon 15, A504T, which changed an asparagine residue to a valine residue.
 
 
 
All material on this website is protected by copyright, Copyright © 1994-2016 by WebMD LLC. This website also contains material copyrighted by 3rd parties.