Close
New

Medscape is available in 5 Language Editions – Choose your Edition here.

 

Measles Workup

  • Author: Selina SP Chen, MD, MPH; Chief Editor: Russell W Steele, MD  more...
 
Updated: Mar 30, 2015
 

Approach Considerations

Although the diagnosis of measles is usually determined from the classic clinical picture (see Clinical), laboratory identification and confirmation of the diagnosis are necessary for the purposes of public health and outbreak control. Laboratory confirmation is achieved by means of serologic testing for immunoglobulin G (IgG) and M (IgM) antibodies, isolation of the virus, and reverse-transcriptase polymerase chain reaction (RT-PCR) evaluation.

A complete blood cell count (CBC) may reveal leukopenia with a relative lymphocytosis and thrombocytopenia. Liver function test (LFT) results may reveal elevated transaminase levels in patients with measles hepatitis.

Consult public health or infectious disease specialists for recommendations and guidelines for diagnostic confirmation of cases and prophylaxis of susceptible contacts.

Case reporting

Because the transmission of indigenous measles has been interrupted in the United States and all recent US epidemics have been linked to imported cases, immediately reporting any suspected case of measles to a local or state health department is imperative, as is obtaining serum for IgM antibody testing as soon as possible (ie, on or after the third day of rash).

The US Centers for Disease Control and Prevention (CDC) clinical case definition for reporting purposes requires only the following:

  • Generalized rash lasting 3 days or longer
  • Temperature of 101.0°F (38.3°C) or higher
  • Cough, coryza, or conjunctivitis

Further, for reporting purposes for the CDC, cases are classified as follows:

  • Suspected - Any febrile illness accompanied by rash
  • Probable - A case that meets the clinical case definition, has noncontributory or no serologic or virologic testing, and is not epidemiologically linked to a confirmed case
  • Confirmed - A case that is laboratory confirmed or that meets the clinical case definition and is epidemiologically linked to a confirmed case; a laboratory-confirmed case need not meet the clinical case definition
Next

Antibody Assays

Immunoglobulin M

The measles virus sandwich-capture IgM antibody assay, offered through many local health departments and through the CDC, is the quickest method of confirming acute measles. Because IgM may not be detectable during the first 2 days of rash, obtain blood for measles-specific IgM on the third day of the rash or on any subsequent day up to 1 month after onset to avoid a false-negative IgM result.

Among persons with confirmed measles infection, the seropositivity rate for first samples is about 77% when collected within 72 hours; the rate rises to 100% when collected 4-11 days after rash onset.[30] Although the measles serum IgM level remains positive 30-60 days after the illness in most individuals, the IgM titer may become undetectable in some subjects at 4 weeks after rash onset. False-positive results can occur in patients with rheumatologic diseases, parvovirus B19 infection, or infectious mononucleosis.

Immunoglobulin G

Laboratories can confirm measles by demonstrating more than a 4-fold rise in IgG antibodies between acute and convalescent sera, although relying solely on rising IgG titers for the diagnosis delays treatment considerably. The earlier the acute serum is drawn, the more reliable the results. IgG antibodies may be detectable 4 days after the onset of the rash, although most cases have detectable IgG antibodies by about a week after rash onset.

Accordingly, it is recommended that specimens be drawn on the seventh day after rash onset. Blood drawn for convalescent serum should be drawn 10-14 days after that drawn for acute serum, and the acute and convalescent sera should be tested simultaneously as paired sera.

Patients with subacute sclerosing panencephalitis (SSPE) have unusually high titers of measles antibody in their serum and cerebrospinal fluid (CSF). The earliest confirmation of measles using IgG antibodies takes about 3 weeks from the onset of illness, a delay too long to permit implementation of effective control measures.

In atypical measles, laboratory evaluation of serum/blood reveals very low titers of measles antibody early in the course of the disease, followed by extremely high measles IgG antibody titers (eg, 1:1,000,000).

IgG levels can be explained by current infection, immunity due to past infection or vaccination, or maternal antibodies present in infants younger than 15 months.

Previous
Next

Viral Culture

Throat swabs and nasal swabs can be sent on viral transport medium or a viral culturette swab to isolate the measles virus. Urine specimens can be sent in a sterile container for viral culture.

Viral genotyping in a reference laboratory may determine whether an isolate is endemic or imported. In immunocompromised patients, who may have poor antibody responses that preclude serologic confirmation of measles, isolation of the virus from infected tissue or identification of measles antigen by means of immunofluorescence may be the only feasible method of confirming the diagnosis.

Previous
Next

Polymerase Chain Reaction

Reverse-transcription polymerase chain reaction (PCR) evaluation is highly sensitive at visualizing measles virus RNA in blood, throat, nasopharyngeal, or urine specimens and, where available, can be used to rapidly confirm the diagnosis of measles.[7] According to the CDC, the samples should be collected at the first contact with a suspected case of measles when the serum sample for diagnosis is drawn.

Previous
Next

Studies for Suspected Complications

Chest radiography

If bacterial pneumonia is suspected, perform chest radiography. The frequent occurrence of measles pneumonia, even in uncomplicated cases, limits the predictive value of chest radiography for bacterial bronchopneumonia.

Lumbar puncture

If encephalitis is suspected, perform a lumbar puncture. CSF examination reveals the following:

  • Increased protein
  • Normal glucose
  • Mild pleocytosis with a predominance of lymphocytes
Previous
Next

Tissue Analysis and Histologic Findings

A skin biopsy from a lesion of the morbilliform eruption shows spongiosis and vesiculation in the epidermis with scattered dyskeratotic keratinocytes. Occasional lymphoid multinucleated giant cells (≤ 100 nm in diameter) can be identified in biopsies of Koplik spots, in dermal or epithelial rashes, in hair follicles and acrosyringium and in lung or lymphoid tissue. These findings are not specific, but they are suggestive of a viral exanthem.

Brain biopsies of patients with measles encephalitis can reveal demyelination, vascular cuffing, gliosis, and infiltration of fat-laden macrophages near blood vessel walls.

Previous
 
 
Contributor Information and Disclosures
Author

Selina SP Chen, MD, MPH Assistant Professor of Pediatrics, Department of Internal Medicine, John A Burns School of Medicine, University of Hawaii; Internal Medicine and Pediatric Hospitalist, Kapiolani Medical Center for Women and Children; Internal Medicine Hospitalist, Straub Clinic and Hospital; Electronic Medical Record Physician Liaison and Trainer

Selina SP Chen, MD, MPH is a member of the following medical societies: American Academy of Pediatrics, American College of Physicians-American Society of Internal Medicine, Society of Hospital Medicine

Disclosure: Nothing to disclose.

Coauthor(s)

Glenn Fennelly, MD, MPH Director, Division of Infectious Diseases, Lewis M Fraad Department of Pediatrics, Jacobi Medical Center; Clinical Associate Professor of Pediatrics, Albert Einstein College of Medicine

Glenn Fennelly, MD, MPH is a member of the following medical societies: Pediatric Infectious Diseases Society

Disclosure: Nothing to disclose.

Chief Editor

Russell W Steele, MD Clinical Professor, Tulane University School of Medicine; Staff Physician, Ochsner Clinic Foundation

Russell W Steele, MD is a member of the following medical societies: American Academy of Pediatrics, American Association of Immunologists, American Pediatric Society, American Society for Microbiology, Infectious Diseases Society of America, Louisiana State Medical Society, Pediatric Infectious Diseases Society, Society for Pediatric Research, Southern Medical Association

Disclosure: Nothing to disclose.

Acknowledgements

Melissa Burnett, MD Department of Dermatology, Massachusetts General Hospital

Disclosure: Nothing to disclose.

Joseph Domachowske, MD Professor of Pediatrics, Microbiology and Immunology, Department of Pediatrics, Division of Infectious Diseases, State University of New York Upstate Medical University

Joseph Domachowske, MD is a member of the following medical societies: Alpha Omega Alpha, American Academy of Pediatrics, American Society for Microbiology, Infectious Diseases Society of America, Pediatric Infectious Diseases Society, and Phi Beta Kappa

Disclosure: Nothing to disclose.

Pamela L Dyne, MD Professor of Clinical Medicine/Emergency Medicine, University of California, Los Angeles, David Geffen School of Medicine; Attending Physician, Department of Emergency Medicine, Olive View-UCLA Medical Center

Pamela L Dyne, MD is a member of the following medical societies: American Academy of Emergency Medicine, American College of Emergency Physicians, and Society for Academic Emergency Medicine

Disclosure: Nothing to disclose.

Dirk M Elston, MD Director, Ackerman Academy of Dermatopathology, New York

Dirk M Elston, MD is a member of the following medical societies: American Academy of Dermatology

Disclosure: Nothing to disclose.

Heather Kesler DeVore, MD Assistant Professor, Clinical Attending Physician, Department of Emergency Medicine, Georgetown University Hospital and Washington Hospital Center

Heather Kesler DeVore, MD is a member of the following medical societies: Emergency Medicine Residents Association and Society for Academic Emergency Medicine

Disclosure: Nothing to disclose.

Leonard R Krilov, MD Chief of Pediatric Infectious Diseases and International Adoption, Vice Chair, Department of Pediatrics, Professor of Pediatrics, Winthrop University Hospital

Leonard R Krilov, MD is a member of the following medical societies: American Academy of Pediatrics, American Pediatric Society, Infectious Diseases Society of America, Pediatric Infectious Diseases Society, and Society for Pediatric Research

Disclosure: Medimmune Grant/research funds Cliinical trials; Medimmune Honoraria Speaking and teaching; Medimmune Consulting fee Consulting

Paul Krusinski, MD Director of Dermatology, Fletcher Allen Health Care; Professor, Department of Internal Medicine, University of Vermont College of Medicine

Paul Krusinski, MD is a member of the following medical societies: American Academy of Dermatology, American College of Physicians, and Society for Investigative Dermatology

Disclosure: Nothing to disclose.

James W Patterson, MD Professor of Pathology and Dermatology, Director of Dermatopathology, University of Virginia Medical Center

James W Patterson, MD is a member of the following medical societies: American Academy of Dermatology, American College of Physicians, American Society of Dermatopathology, Royal Society of Medicine, Society for Investigative Dermatology, and United States and Canadian Academy of Pathology

Disclosure: Nothing to disclose.

Stacy Sawtelle, MD Clinical Instructor, Department of Emergency Medicine, University of California, San Francisco, School of Medicine

Disclosure: Nothing to disclose.

Gina A Taylor, MD Clinical Assistant Professor, Attending Dermatologist and Dermatopathologist, State University of New York Downstate Medical Center; Director of Dermatology Service, Attending Dermatologist, Kings County Hospital Center

Gina A Taylor, MD is a member of the following medical societies: American Academy of Dermatology

Disclosure: Nothing to disclose.

Michael J Wells, MD Associate Professor, Department of Dermatology, Texas Tech University Health Sciences Center, Paul L Foster School of Medicine

Michael J Wells, MD is a member of the following medical societies: Alpha Omega Alpha, American Academy of Dermatology, American Medical Association, and Texas Medical Association

Disclosure: Nothing to disclose.

Garry Wilkes, MBBS, FACEM Director of Emergency Medicine, Calvary Hospital, Canberra, ACT; Adjunct Associate Professor, Edith Cowan University, Western Australia

Disclosure: Nothing to disclose.

Mary L Windle, PharmD Adjunct Associate Professor, University of Nebraska Medical Center College of Pharmacy; Editor-in-Chief, Medscape Drug Reference

Disclosure: Nothing to disclose.

Grace M Young, MD Associate Professor, Department of Pediatrics, University of Maryland Medical Center

Grace M Young, MD is a member of the following medical societies: American Academy of Pediatrics and American College of Emergency Physicians

Disclosure: Nothing to disclose.

References
  1. Lowes R. Three-Fold Increase in Measles Warrants Vigilance, CDC Says. Medscape Medical News. Available at http://www.medscape.com/viewarticle/815514. Accessed: December 9, 2013.

  2. Papania MJ, Wallace GS, Rota PA, et al. Elimination of Endemic Measles, Rubella, and Congenital Rubella Syndrome From the Western Hemisphere: The US Experience. JAMA Pediatr. 2013 Dec 5. [Medline].

  3. Gastanaduy PA, Redd SB, Fiebelkorn AP, et al. Measles - United States, January 1-May 23, 2014. MMWR Morb Mortal Wkly Rep. 2014 Jun 6. 63(22):496-499. [Medline].

  4. California Department of Public Health Confirms 59 Cases of Measles. California Department of Public Health. Available at http://www.cdph.ca.gov/Pages/NR15-008.aspx. Accessed: January 23, 2015.

  5. Harrison L. AAP updates measles recommendations. Medscape Medical News. WebMD Inc. Available at http://www.medscape.com/viewarticle/839688. Accessed: March 31, 2015.

  6. 2015 Report of the Committee on Infectious Diseases. Early Release from Red Book. American Academy of Pediatrics. Available at http://redbook.solutions.aap.org/DocumentLibrary/2015RedBookMeasles.pdf. Accessed: March 31, 2015.

  7. Bar-On S, Ochshorn Y, Halutz O, Aboudy Y, Many A. Detection of measles virus by reverse-transcriptase polymerase chain reaction in a placenta. J Matern Fetal Neonatal Med. 2010 Aug. 23(8):935-7. [Medline].

  8. American Academy of Pediatrics. Measles. Pickering LK, ed. Red Book: Report of the Committee on Infectious Disease. Elk Grove, Ill: AAP; 2006. 441-52.

  9. Sabella C. Measles: not just a childhood rash. Cleve Clin J Med. 2010 Mar. 77(3):207-13. [Medline].

  10. [Guideline] Centers for Disease Control and Prevention. Recommended immunization schedules for persons aged 0 through 18 years---United States, 2009. CDC Recommended Vaccine Schedule. 2008 Dec. 57(51;52):[Full Text].

  11. Meissner HC, Strebel PM, Orenstein WA. Measles vaccines and the potential for worldwide eradication of measles. Pediatrics. 2004. 114(4):1065-9. [Medline]. [Full Text].

  12. Smeeth L, Cook C, Fombonne E, et al. MMR vaccination and pervasive developmental disorders: a case-control study. Lancet. 2004. 11-17;364(9438):963-9. [Medline].

  13. Schneider-Schaulies S, Schneider-Schaulies J. Measles virus-induced immunosuppression. Curr Top Microbiol Immunol. 2009. 330:243-69. [Medline].

  14. Markowitz LE, Preblud SR, Fine PE, Orenstein WA. Duration of live measles vaccine-induced immunity. Pediatr Infect Dis J. 1990 Feb. 9(2):101-10. [Medline].

  15. Reported vaccine-preventable diseases--United States, 1993, and the childhood immunization initiative. MMWR Morb Mortal Wkly Rep. 1994 Feb 4. 43(4):57-60. [Medline].

  16. Orenstein WA, Papania MJ, Wharton ME. Measles elimination in the United States. J Infect Dis. 2004 May 1. 189 Suppl 1:S1-3. [Medline].

  17. Coleman KP, Markey PG. Measles transmission in immunized and partially immunized air travellers. Epidemiol Infect. 2010 Jul. 138(7):1012-5. [Medline].

  18. Measles--United States, 2005. MMWR Morb Mortal Wkly Rep. 2006 Dec 22. 55(50):1348-51. [Medline].

  19. Update: measles--United States, January-July 2008. MMWR Morb Mortal Wkly Rep. 2008 Aug 22. 57(33):893-6. [Medline].

  20. Centers for Disease Control and Prevention. Measles—United States, January–May 20, 2011. MMWR Morb Mortal Wkly Rep. 2011 May 24;60(Early Release):1-4:

  21. Notes from the field: Measles outbreak--Hennepin County, Minnesota, February-March 2011. MMWR Morb Mortal Wkly Rep. 2011 Apr 8. 60(13):421. [Medline].

  22. Centers for Disease Control and Prevention. Program in brief: Measles Mortality Reduction and Regional Global Measles Elimination. Available at http://www.cdc.gov/ncird/progbriefs/downloads/global-measles-elim.pdf. Accessed: April 14, 2009.

  23. Global measles mortality, 2000-2008. MMWR Morb Mortal Wkly Rep. 2009 Dec 4. 58(47):1321-6. [Medline].

  24. Benkimoun P. Outbreak of measles in France shows no signs of abating. BMJ. 2011 May 20. 342:d3161. [Medline].

  25. Measles outbreaks and progress toward measles preelimination --- African region, 2009-2010. MMWR Morb Mortal Wkly Rep. 2011 Apr 1. 60(12):374-8. [Medline].

  26. Garenne M. Sex differences in measles mortality: a world review. Int J Epidemiol. 1994 Jun. 23(3):632-42. [Medline].

  27. Forni AL, Schluger NW, Roberts RB. Severe measles pneumonitis in adults: evaluation of clinical characteristics and therapy with intravenous. Clin Infect Dis Sep. 1994. 19(3):454-62. [Medline].

  28. Fusilli G, De Mitri B. Acute pancreatitis associated with the measles virus: case report and review of literature data. Pancreas. 2009 May. 38(4):478-80. [Medline].

  29. Perry RT, Halsey NA. The clinical significance of measles: a review. J Infect Dis. 2004 May 1. 189 Suppl 1:S4-16. [Medline].

  30. Helfand RF, Heath JL, Anderson LJ, et al. Diagnosis of measles with an IgM capture EIA: the optimal timing of specimen collection after rash onset. J Infect Dis. 1997 Jan. 175(1):195-9. [Medline].

  31. Hosoya M, Shigeta S, Mori S, et al. High-dose intravenous ribavirin therapy for subacute sclerosing panencephalitis. Antimicrob Agents Chemother. 2001 Mar. 45(3):943-5. [Medline].

  32. The Merck Manuals Online Medical Library. Available at http://www.merck.com/mmpe/sec14/ch193/ch193b.html.

  33. MMR-II vaccine insert. Available at http://www.merck.com/product/usa/pi_circulars/m/mmr_ii/mmr_ii_pi.pdf.

  34. Immunization Schedules. Updated August 25, 2010. Centers for Disease Control and Prevention (CDC). Available at http://www.cdc.gov/vaccines/recs/schedules/default.htm. Accessed: May 25, 2011.

  35. Rowhani-Rahbar A, Fireman B, Lewis E, et al. Effect of age on the risk of fever and seizures following immunization With measles-containing vaccines in children. JAMA Pediatr. 2013 Oct 14. [Medline].

  36. Henderson D. Measles vaccine: lower seizure risk when given early on. Medscape Medical News. October 14, 2013. [Full Text].

  37. Hand L. MMR: ACIP Vaccine Recommendations, Japan Rubella Outbreak. Available at http://www.medscape.com/viewarticle/806524. Accessed: July 15, 2013.

  38. Prevention of Measles, Rubella, Congenital Rubella Syndrome, and Mumps, 2013: Summary Recommendations of the Advisory Committee on Immunization Practices (ACIP). MMWR Recomm Rep. 2013 Jun 14. 62:1-34. [Medline].

  39. Measles imported by returning U.S. travelers aged 6-23 months, 2001-2011. MMWR Morb Mortal Wkly Rep. 2011 Apr 8. 60(13):397-400. [Medline].

  40. Klein NP, Fireman B, Yih WK, et al. Measles-mumps-rubella-varicella combination vaccine and the risk of febrile seizures. Pediatrics. 2010 Jul. 126(1):e1-8. [Medline].

  41. Hviid A. Measles-mumps-rubella-varicella combination vaccine increases risk of febrile seizure. J Pediatr. 2011 Jan. 158(1):170. [Medline]. [Full Text].

  42. [Guideline] Marin M, Broder KR, Temte JL, Snider DE, Seward JF. Use of combination measles, mumps, rubella, and varicella vaccine: recommendations of the Advisory Committee on Immunization Practices (ACIP). MMWR Recomm Rep. 2010 May 7. 59:1-12. [Medline]. [Full Text].

  43. [Guideline] American Academy of Pediatrics; Committee on Infectious Diseases. Policy Statement--Prevention of Varicella: Update of Recommendations for Use of Quadrivalent and Monovalent Varicella Vaccines in Children. Pediatrics. 2011 Aug 28. [Medline].

  44. Madsen KM, Hviid A, Vestergaard M, et al. A population-based study of measles, mumps, and rubella vaccination and autism. N Engl J Med. 2002 Nov 7. 347(19):1477-82. [Medline].

  45. Mrozek-Budzyn D, Kieltyka A, Majewska R. Lack of association between measles-mumps-rubella vaccination and autism in children: a case-control study. Pediatr Infect Dis J. 2010 May. 29(5):397-400. [Medline].

  46. Measles Initiative highlights the importance of adherence to global goals and strategies (news release). Available at http://bit.ly/mULNYb. Accessed: May 26, 2011.

 
Previous
Next
 
Koplik spots in measles. Photograph courtesy of World Health Organization.
Enanthem of measles (Koplik spots).
Measles conjunctivitis.
Face of boy with measles.
Morbilliform rash.
 
 
 
All material on this website is protected by copyright, Copyright © 1994-2016 by WebMD LLC. This website also contains material copyrighted by 3rd parties.