Close
New

Medscape is available in 5 Language Editions – Choose your Edition here.

 

Kernicterus Differential Diagnoses

  • Author: Shelley C Springer, JD, MD, MSc, MBA, FAAP; Chief Editor: Ted Rosenkrantz, MD  more...
 
Updated: Apr 02, 2014
 
 

Diagnostic Considerations

Theoretically, most cases of kernicterus may be completely prevented by initiation of phototherapy in every baby shortly after birth. Therefore, this devastating neurologic disease could be prevented most of the time. As such, a significant component of medicolegal liability is introduced into the management of hyperbilirubinemia. Clinical reports of kernicterus in the absence of profound hyperbilirubinemia, coupled with the lack of definitive standards of care for the initiation of phototherapy, further complicate this exposure. As with all medical care, conformity with published clinical guidelines, rationale for departure from accepted clinical norms, and good documentation are the best defenses.

The numerous areas of uncertainty surrounding the diagnosis and treatment of hyperbilirubinemia in the infant, coupled with the infrequency of sequelae, foster a cavalier attitude about the evaluation of an infant with jaundice. However, remembering that physiologic hyperbilirubinemia is a diagnosis of exclusion is important, and kernicterus, when it occurs, is devastating. Therefore, failure to evaluate or provide reasonable follow-up of infants at risk for the development of severe hyperbilirubinemia may place the clinician in a position that could be difficult to defend.

Definitive recommendations from the AAP regarding in-hospital evaluation and treatment for hyperbilirubinemia in the late preterm and term infant (>35 wk estimated gestational age), as well as interval and methodology for outpatient follow-up, provide useful clinical parameters and now form a standard of care against which individual patient care may be judged. Many hospitals have developed clear documents that outline the standard for evaluation and treatment of hyperbilirubinemia, and some of these risk-management approaches have appeared in the medical literature. That being said, learned minds the world over acknowledge the lack of evidence directing best practice for neonatal hyperbilirubinemia and the complexities that will always demand individualized treatment approaches.[18, 19]

Sepsis must always be excluded in the infant with jaundice. Uncommon, but treatable, metabolic causes of jaundice include hypothyroidism and galactosemia. The first sign of occult immune or nonimmune hemolytic disease may be hyperbilirubinemia. Failure by the clinician to diagnose an underlying etiology results in considerable medicolegal exposure.

Differential Diagnoses

 
 
Contributor Information and Disclosures
Author

Shelley C Springer, JD, MD, MSc, MBA, FAAP Professor, University of Medicine and Health Sciences, St Kitts, West Indies; Clinical Instructor, Department of Pediatrics, University of Vermont College of Medicine; Clinical Instructor, Department of Pediatrics, University of Wisconsin School of Medicine and Public Health

Shelley C Springer, JD, MD, MSc, MBA, FAAP is a member of the following medical societies: American Academy of Pediatrics

Disclosure: Nothing to disclose.

Coauthor(s)

David J Annibale, MD Professor of Pediatrics, Director of Neonatology, Director of Fellowship Training Program in Neonatal-Perinatal Medicine, Department of Pediatrics, Medical University of South Carolina

David J Annibale, MD is a member of the following medical societies: American Academy of Pediatrics, National Perinatal Association

Disclosure: Nothing to disclose.

Specialty Editor Board

Mary L Windle, PharmD Adjunct Associate Professor, University of Nebraska Medical Center College of Pharmacy; Editor-in-Chief, Medscape Drug Reference

Disclosure: Nothing to disclose.

David A Clark, MD Chairman, Professor, Department of Pediatrics, Albany Medical College

David A Clark, MD is a member of the following medical societies: Alpha Omega Alpha, American Academy of Pediatrics, American Pediatric Society, Christian Medical and Dental Associations, Medical Society of the State of New York, New York Academy of Sciences, Society for Pediatric Research

Disclosure: Nothing to disclose.

Chief Editor

Ted Rosenkrantz, MD Professor, Departments of Pediatrics and Obstetrics/Gynecology, Division of Neonatal-Perinatal Medicine, University of Connecticut School of Medicine

Ted Rosenkrantz, MD is a member of the following medical societies: American Academy of Pediatrics, American Pediatric Society, Eastern Society for Pediatric Research, American Medical Association, Connecticut State Medical Society, Society for Pediatric Research

Disclosure: Nothing to disclose.

Additional Contributors

Oussama Itani, MD, FAAP, FACN Clinical Associate Professor of Pediatrics and Human Development, Michigan State University; Medical Director, Department of Neonatology, Borgess Medical Center

Oussama Itani, MD, FAAP, FACN is a member of the following medical societies: American Academy of Pediatrics, American Association for Physician Leadership, American Heart Association, American College of Nutrition

Disclosure: Nothing to disclose.

References
  1. Brooks JC, Fisher-Owens SA, Wu YW, Strauss DJ, Newman TB. Evidence suggests there was not a "resurgence" of kernicterus in the 1990s. Pediatrics. 2011 Apr. 127(4):672-9. [Medline].

  2. Moll M, Goelz R, Naegele T, Wilke M, Poets CF. Are recommended phototherapy thresholds safe enough for extremely low birth weight (ELBW) infants? A report on 2 ELBW infants with kernicterus despite only moderate hyperbilirubinemia. Neonatology. 2011. 99(2):90-4. [Medline].

  3. Dogan M, Peker E, Kirimi E, Sal E, Akbayram S, Erel O, et al. Evaluation of oxidant and antioxidant status in infants with hyperbilirubinemia and kernicterus. Hum Exp Toxicol. 2011 Nov. 30(11):1751-60. [Medline].

  4. Gkoltsiou K, Tzoufi M, Counsell S, Rutherford M, Cowan F. Serial brain MRI and ultrasound findings: relation to gestational age, bilirubin level, neonatal neurologic status and neurodevelopmental outcome in infants at risk of kernicterus. Early Hum Dev. 2008 Dec. 84(12):829-38. [Medline].

  5. Johnson L, Brown AK. A pilot registry for acute and chronic kernicterus in term and near-term infants. Pediatrics. 1999 Sept. 104:(3):736.

  6. Johnson LH, Bhutani VK, Brown AK. System-based approach to management of neonatal jaundice and prevention of kernicterus. J Pediatr. 2002 Apr. 140(4):396-403. [Medline].

  7. Ebbesen F. Recurrence of kernicterus in term and near-term infants in Denmark. Acta Paediatr. 2000 Oct. 89(10):1213-7. [Medline].

  8. Ebbesen F, Andersson C, Verder H, Grytter C, Pedersen-Bjergaard L, Petersen JR, et al. Extreme hyperbilirubinaemia in term and near-term infants in Denmark. Acta Paediatr. 2005 Jan. 94(1):59-64. [Medline].

  9. British Paediatric Surveillance Unit. Surveillance of severe hyperbilirubinaemia in the newborn commenced the May. BPSU Quarterly Bulletin. 2003. 11(2):2.

  10. Sgro M, Campbell D, Shah V. Incidence and causes of severe neonatal hyperbilirubinemia in Canada. CMAJ. 2006 Sep 12. 175(6):587-90. [Medline].

  11. Bhutani VK, Johnson L. Kernicterus in the 21st century: frequently asked questions. J Perinatol. 2009 Feb. 29 Suppl 1:S20-4. [Medline].

  12. Johnson L, Bhutani VK, Karp K, Sivieri EM, Shapiro SM. Clinical report from the pilot USA Kernicterus Registry (1992 to 2004). J Perinatol. 2009 Feb. 29 Suppl 1:S25-45. [Medline].

  13. Gamaleldin R, Iskander I, Seoud I, Aboraya H, Aravkin A, Sampson PD. Risk factors for neurotoxicity in newborns with severe neonatal hyperbilirubinemia. Pediatrics. 2011 Oct. 128(4):e925-31. [Medline].

  14. Sgro M, Campbell D, Shah V. Incidence and causes of severe neonatal hyperbilirubinemia in Canada. CMAJ. 2006 Sep 12. 175(6):587-90. [Medline].

  15. Peker E, Kirimi E, Tuncer O, Ceylan A. Severe hypernatremia in newborns due to salting. Eur J Pediatr. 2010 Jul. 169(7):829-32. [Medline].

  16. Abu-Osba YK, Jarad RA, Zainedeen KH, Khmour AY. Salting Newborns: Pickling Them or Killing Them? A practice that should be stopped. powerpoint file. Available at http://medical.abu-osba.com/PublishedPapers/20091514331.ppt. Accessed: March 31, 2012.

  17. Ahlfors CE. Predicting bilirubin neurotoxicity in jaundiced newborns. Curr Opin Pediatr. 4/2010. 22(2):129-33. [Medline].

  18. Watchko JF, Jeffrey Maisels M. Enduring controversies in the management of hyperbilirubinemia in preterm neonates. Semin Fetal Neonatal Med. 2010 Jun. 15(3):136-40. [Medline].

  19. Rennie JM, Sehgal A, De A, Kendall GS, Cole TJ. Range of UK practice regarding thresholds for phototherapy and exchange transfusion in neonatal hyperbilirubinaemia. Arch Dis Child Fetal Neonatal Ed. 2009 Sep. 94(5):F323-7. [Medline].

  20. McDonagh AF. Ex uno plures: the concealed complexity of bilirubin species in neonatal blood samples. Pediatrics. 2006 Sep. 118(3):1185-7. [Medline].

  21. Ahlfors CE. Predicting bilirubin neurotoxicity in jaundiced newborns. Curr Opin Pediatr. 2010 Apr. 22(2):129-33. [Medline].

  22. Daood MJ, McDonagh AF, Watchko JF. Calculated free bilirubin levels and neurotoxicity. J Perinatol. 2009 Feb. 29 Suppl 1:S14-9. [Medline].

  23. AAP. Management of hyperbilirubinemia in the newborn infant 35 or more weeks of gestation. Pediatrics. 2004 Jul. 114(1):297-316. [Medline].

  24. Yu ZB, Dong XY, Han SP, Chen YL, Quiu YF, Sha L, et al. Transcutaneous bilirubine nomogram for predicting neonatal hyperbilirubinemia in healthy term and late-preterm Chinese infants. Eur J Pediatr. 2/2011. 170(2):185-91. [Medline].

  25. Screening of infants for hyperbilirubinemia to prevent chronic bilirubin encephalopathy: US Preventive Services Task Force recommendation statement. Pediatrics. 2009 Oct. 124(4):1172-7. [Medline].

  26. Bental YA, Shiff Y, Dorsht N, Litig E, Tuval L, Mimouni FB. Bhutani-based nomograms for the prediction of significant hyperbilirubinaemia using transcutaneous measurements of bilirubin. Acta Paediatr. 2009 Dec. 98(12):1902-8. [Medline].

  27. Mehta S, Kumar P, Narang A. A randomized controlled trial of fluid supplementation in term neonates with severe hyperbilirubinemia. J Pediatr. 2005. 147 (6):781 - 5. [Medline].

  28. Sanpavat S. Exchange transfusion and its morbidity in ten-year period at King Chulalongkorn Hospital. J Med Assoc Thai. 2005 May. 88(5):588-92. [Medline].

  29. Badiee Z. Exchange transfusion in neonatal hyperbilirubinaemia: experience in Isfahan, Iran. Singapore Med J. 2007 May. 48(5):421-3. [Medline].

  30. Bisceglia M, Indrio F, Riezzo G, Poerio V, Corapi U, Raimondi F. The effect of prebiotics in the management of neonatal hyperbilirubinaemia. Acta Paediatr. 2009 Oct. 98(10):1579-81. [Medline].

  31. Gourley GR, Li Z, Kreamer BL, Kosorok MR. A controlled, randomized, double-blind trial of prophylaxis against jaundice among breastfed newborns. Pediatrics. 2005 Aug. 116(2):385-91. [Medline].

  32. Dennery PA. Metalloporphyrins for the treatment of neonatal jaundice. Curr Opin Pediatr. 2005 Apr. 17(2):167-9. [Medline].

  33. Kaplan M, Kaplan E, Hammerman C, et al. Post-phototherapy neonatal bilirubin rebound: a potential cause of significant hyperbilirubinaemia. Arch Dis Child. 2006 Jan. 91(1):31-4. [Medline].

  34. Newman TB, Kuzniewicz MW, Liljestrand P, Wi S, McCulloch C, Escobar GJ. Numbers needed to treat with phototherapy according to American Academy of Pediatrics guidelines. Pediatrics. 2009 May. 123(5):1352-9. [Medline]. [Full Text].

  35. Martins BM, de Carvalho M, Moreira ME, Lopes JM. Efficacy of new microprocessed phototherapy system with five high intensity light emitting diodes (Super LED). J Pediatr (Rio J). 2007 May-Jun. 83(3):253-8. [Medline].

  36. Romagnoli C, Zecca E, Papacci P, Vento G, Girlando P, Latella C. Which phototherapy system is most effective in lowering serum bilirubin in very preterm infants?. Fetal Diagn Ther. 2006. 21(2):204-9. [Medline].

  37. van Kaam AH, van Beek RH, Vergunst-van Keulen JG, et al. Fibre optic versus conventional phototherapy for hyperbilirubinaemia in preterm infants. Eur J Pediatr. 1998 Feb. 157(2):132-7. [Medline].

  38. Keren R, Bhutani VK, Luan X, Nihtianova S, Cnaan A, Schwartz JS. Identifying newborns at risk of significant hyperbilirubinaemia: a comparison of two recommended approaches. Arch Dis Child. 2005 Apr. 90(4):415-21. [Medline].

  39. Keren R, Luan X, Friedman S, Saddlemire S, Cnaan A, Bhutani VK. A comparison of alternative risk-assessment strategies for predicting significant neonatal hyperbilirubinemia in term and near-term infants. Pediatrics. 2008 Jan. 121(1):e170-9. [Medline].

  40. Csoma Z, Toth-Molnar E, Balogh K, et al. Neonatal blue light phototherapy and melanocytic nevi: a twin study. Pediatrics. 2011 Oct. 128(4):e856-64. [Medline].

  41. Raghavan K, Thomas E, Patole S, Muller R. Is phototherapy a risk factor for ileus in high-risk neonates?. J Matern Fetal Neonatal Med. 2005 Aug. 18(2):129-31. [Medline].

  42. Chen J, Sadakata M, Ishida M, Sekizuka N, Sayama M. Baby massage ameliorates neonatal jaundice in full-term newborn infants. Tohoku J Exp Med. 2011. 223(2):97-102. [Medline].

  43. Lazarus C, Avchen RN. Neonatal hyperbilirubinemia management: a model for change. J Perinatol. 2009 Feb. 29 Suppl 1:S58-60. [Medline].

  44. Bhutani VK, Johnson L. A proposal to prevent severe neonatal hyperbilirubinemia and kernicterus. J Perinatol. 2009 Feb. 29 Suppl 1:S61-7. [Medline].

  45. Ahlfors CE, Wennberg RP. Bilirubin-albumin binding and neonatal jaundice. Semin Perinatol. 2004 Oct. 28(5):334-9. [Medline].

  46. AlOtaibi SF, Blaser S, MacGregor DL. Neurological complications of kernicterus. Can J Neurol Sci. 2005 Aug. 32(3):311-5. [Medline].

  47. Bader D, Yanir Y, Kugelman A, et al. Induction of early meconium evacuation: is it effective in reducing the level of neonatal hyperbilirubinemia?. Am J Perinatol. 2005 Aug. 22(6):329-33. [Medline].

  48. Barefield ES, Dwyer MD, Cassady G. Association of patent ductus arteriosus and phototherapy in infants weighting less than 1000 grams. J Perinatol. 1993 Sep-Oct. 13(5):376-80. [Medline].

  49. Bhutani VK, Donn SM, Johnson LH. Risk management of severe neonatal hyperbilirubinemia to prevent kernicterus. Clin Perinatol. 2005. 32 (1):125 - 39, vii. [Medline].

  50. Bhutani VK, Johnson L, Sivieri EM. Predictive ability of a predischarge hour-specific serum bilirubin for subsequent significant hyperbilirubinemia in healthy term and near-term newborns. Pediatrics. 1999 Jan. 103(1):6-14. [Medline]. [Full Text].

  51. Bhutani VK, Johnson LH, Jeffrey Maisels M, et al. Kernicterus: epidemiological strategies for its prevention through systems-based approaches. J Perinatol. 2004 Oct. 24(10):650-62. [Medline].

  52. Cashore WJ. Bilirubin and jaundice in the micropremie. Clin Perinatol. 2000 Mar. 27(1):171-9, vii. [Medline].

  53. Drummond GS, Kappas A. Chemoprevention of severe neonatal hyperbilirubinemia. Semin Perinatol. 2004 Oct. 28(5):365-8. [Medline].

  54. Gartner LM. Neonatal jaundice. Pediatr Rev. 1994 Nov. 15(11):422-32. [Medline].

  55. Juretschke LJ. Kernicterus: still a concern. Neonatal Netw. 2005 Mar-Apr. 24(2):7-19. [Medline].

  56. Kaplan M, Hammerman C. Understanding severe hyperbilirubinemia and preventing kernicterus: adjuncts in the interpretation of neonatal serum bilirubin. Clin Chim Acta. 2005 Jun. 356(1-2):9-21. [Medline].

  57. Kumral A, Genc S, Genc K, et al. Hyperbilirubinemic serum is cytotoxic and induces apoptosis in murine astrocytes. Biol Neonate. 2005. 87(2):99-104. [Medline].

  58. MacMahon JR, Stevenson DK, Oski FA. Physiologic jaundice. Taeusch, Ballards, eds. Avery's Disease of the Newborn. 7th ed. Philadelphia, PA: Saunders; 1998. 1003-7.

  59. Maisels MJ. Jaundice. Avery, Fletcher, eds. Neonatology, Pathophysiology and Management of the Newborn. 5th ed. Philadelphia, PA: Lippincott; 1999. 765-819.

  60. Petersen JR, Okorodudu AO, Mohammad AA, et al. Association of transcutaneous bilirubin testing in hospital with decreased readmission rate for hyperbilirubinemia. Clin Chem. 2005. 51 (3):481 - 2. [Medline]. [Full Text].

  61. Pezzati M, Biagiotti R, Vangi V, et al. Changes in mesenteric blood flow response to feeding: conventional versus fiber-optic phototherapy. Pediatrics. 2000 Feb. 105(2):350-3. [Medline]. [Full Text].

  62. Rubegni P, Cevenini G, Sbano P, et al. Cutaneous colorimetric evaluation of serum concentrations of bilirubin in healthy term neonates: a new methodological approach. Skin Res Technol. 2005 Feb. 11(1):70-5. [Medline].

  63. Sanpavat S, Nuchprayoon I. Noninvasive transcutaneous bilirubin as a screening test to identify the need for serum bilirubin assessment. J Med Assoc Thai. 2004 Oct. 87(10):1193-8. [Medline].

  64. Shapiro SM. Definition of the clinical spectrum of kernicterus and bilirubin-induced neurologic dysfunction (BIND). J Perinatol. 2005 Jan. 25(1):54-9. [Medline].

  65. Taketomo CK, Hodding JH, Draus DM. Pediatric Dosage Handbook. 10th ed. Cleveland, OH: Lexi-Comp, Inc; 2003.

  66. Volpe JJ. Bilirubin and Brain Injury: Neurology of the Newborn. 3rd ed. Philadelphia, PA: WB Saunders; 1995. 490-514.

  67. Watchko JF. Vigintiphobia revisited. Pediatrics. 2005 Jun. 115(6):1747-53. [Medline].

  68. Willems WA, van den Berg LM, de Wit H, Molendijk A. Transcutaneous bilirubinometry with the Bilicheck in very premature newborns. J Matern Fetal Neonatal Med. 2004 Oct. 16(4):209-14. [Medline].

 
Previous
Next
 
Typical patterns of total serum bilirubin levels in neonates of different racial origins. Used with the permission of the Academy of Pediatrics.
Overview of bilirubin metabolism.
Hour-specific nomogram for total serum bilirubin and attendant risk of subsequent severe disease in term and preterm infants. Used with the permission of the Academy of Pediatrics.
Magnetic resonance image of 21-month-old with kernicterus. Area of abnormality is the symmetric high-intensity signal in the area of the globus pallidus (arrows). Courtesy of M.J. Maisels.
Neuronal changes observed in kernicterus. Courtesy of J.J. Volpe.
 
 
 
All material on this website is protected by copyright, Copyright © 1994-2016 by WebMD LLC. This website also contains material copyrighted by 3rd parties.