Close
New

Medscape is available in 5 Language Editions – Choose your Edition here.

 

Pediatric Astrocytoma Medication

  • Author: Tobey J MacDonald, MD; Chief Editor: Max J Coppes, MD, PhD, MBA  more...
 
Updated: Nov 25, 2014
 

Medication Summary

Current investigational dosing chemotherapy regimens for the treatment of low-grade astrocytomas with carboplatin and vincristine and for the treatment of high-grade astrocytomas with temozolomide,[8] carmustine (BCNU), and cisplatin are provided below.

Next

Antineoplastic agents

Class Summary

These agents disrupt DNA replication, which inhibits tumor growth and promotes tumor cell death. Cancer chemotherapy is based on an understanding of tumor cell growth and how drugs affect this growth. After cells divide, they enter a period of growth (phase G1), followed by DNA synthesis (phase S). The next phase is a premitotic phase (G2), then finally a mitotic cell division (phase M).

The cell division rate varies for different tumors. Most common cancers increase very slowly in size compared to normal tissues, and the rate may decrease further in large tumors. This difference allows normal cells to recover from chemotherapy more quickly than malignant ones and is the rationale behind current cyclic dosage schedules.

Antineoplastic agents interfere with cell reproduction. Some agents are cell cycle specific, while others (eg, alkylating agents, anthracyclines, cisplatin) are not phase-specific. Cellular apoptosis (ie, programmed cell death) is also a potential mechanism of many antineoplastic agents.

Temozolomide (Temodar)

 

Prodrug that is hydrolyzed to MTIC at physiologic pH. Exerts its effect by site-specific DNA cross-linking resulting from the methylation guanine at the O6 and N7 positions. Bioavailability is 100%; approximately 35% crosses the blood-brain barrier.

Carboplatin (Paraplatin)

 

Analog of cisplatin. This is a heavy metal coordination complex that exerts its cytotoxic effect by platination of DNA, a mechanism analogous to alkylation, leading to interstrand and intrastrand DNA crosslinks and inhibition of DNA replication.

Vincristine (Oncovin)

 

Plant-derived vinca alkaloid. Acts as a mitotic inhibitor by binding tubulin.

Carmustine (BiCNU)

 

This DNA alkylator causes interstrand and intrastrand DNA crosslinks, resulting in damage to the DNA template and inhibition of DNA replication.

Cisplatin (Platinol)

 

This heavy metal coordination complex exerts its cytotoxic effect by platination of DNA, a mechanism analogous to alkylation, leading to interstrand and intrastrand DNA crosslinks and inhibition of DNA replication.

Previous
 
 
Contributor Information and Disclosures
Author

Tobey J MacDonald, MD Professor, Department of Pediatrics, Emory University School of Medicine; Director, Pediatric Brain Tumor Program, Aflac Chair for Neuro-Oncology, Aflac Cancer and Blood Disorders Center, Children's Healthcare of Atlanta

Tobey J MacDonald, MD is a member of the following medical societies: American Association for Cancer Research, Society for Neuro-Oncology, International Society of Paediatric Oncology

Disclosure: Nothing to disclose.

Coauthor(s)

Roger J Packer, MD Senior Vice President, Neuroscience and Behavioral Medicine, Director, Brain Tumor Institute, Children’s National Medical CenterProfessor of Neurology and Pediatrics, The George Washington University

Roger J Packer, MD is a member of the following medical societies: American Academy of Neurology, American Neurological Association, American Pediatric Society, Child Neurology Society, Children's Oncology Group, Society for Neuro-Oncology, Pediatric Brain Tumor Consortium, Neurofibromatosis Clinical Trials Consortium

Disclosure: Nothing to disclose.

Specialty Editor Board

Mary L Windle, PharmD Adjunct Associate Professor, University of Nebraska Medical Center College of Pharmacy; Editor-in-Chief, Medscape Drug Reference

Disclosure: Nothing to disclose.

Timothy P Cripe, MD, PhD, FAAP Chief, Division of Hematology/Oncology/BMT, Gordon Teter Endowed Chair in Pediatric Cancer, Nationwide Children's Hospital; Professor of Pediatrics, Ohio State University College of Medicine

Timothy P Cripe, MD, PhD, FAAP is a member of the following medical societies: American Academy of Pediatrics, American Association for the Advancement of Science, American Association for Cancer Research, American Pediatric Society, American Society of Gene and Cell Therapy, American Society of Pediatric Hematology/Oncology, Connective Tissue Oncology Society, Society for Pediatric Research, Children's Oncology Group

Disclosure: Nothing to disclose.

Chief Editor

Max J Coppes, MD, PhD, MBA Executive Vice President, Chief Medical and Academic Officer, Renown Heath

Max J Coppes, MD, PhD, MBA is a member of the following medical societies: American College of Healthcare Executives, American Society of Pediatric Hematology/Oncology, Society for Pediatric Research

Disclosure: Nothing to disclose.

Acknowledgements

Samuel Gross, MD Professor Emeritus, Department of Pediatrics, University of Florida College of Medicine; Clinical Professor, Department of Pediatrics, University of North Carolina at Chapel Hill School of Medicine; Adjunct Professor, Department of Pediatrics, Duke University School of Medicine

Samuel Gross, MD is a member of the following medical societies: American Association for Cancer Research, American Society for Blood and Marrow Transplantation, American Society of Clinical Oncology, American Society of Hematology, and Society for Pediatric Research

Disclosure: Nothing to disclose.

References
  1. Hales RK, Shokek O, Burger PC, Paynter NP, Chaichana KL, Quiñones-Hinojosa A, et al. Prognostic factors in pediatric high-grade astrocytoma: the importance of accurate pathologic diagnosis. J Neurooncol. 2010 Aug. 99(1):65-71. [Medline].

  2. Tihan T, Ersen A, Qaddoumi I, Sughayer MA, Tolunay S, Al-Hussaini M, et al. Pathologic characteristics of pediatric intracranial pilocytic astrocytomas and their impact on outcome in 3 countries: a multi-institutional study. Am J Surg Pathol. 2012 Jan. 36(1):43-55. [Medline].

  3. Leroy HA, Baroncini M, Delestret I, Florent V, Vinchon M. Anorexia: an early sign of fourth ventricle astrocytoma in children. Childs Nerv Syst. 2014 Dec. 30(12):2089-95. [Medline].

  4. Belirgen M, Berrak SG, Ozdag H, Bozkurt SU, Eksioglu-Demiralp E, Ozek MM. Biologic tumor behavior in pilocytic astrocytomas. Childs Nerv Syst. 2012 Mar. 28(3):375-89. [Medline].

  5. Chintagumpala MM, Friedman HS, Stewart CF, et al. A phase II window trial of procarbazine and topotecan in children with high-grade glioma: a report from the children's oncology group. J Neurooncol. 2006 Apr. 77(2):193-8. [Medline].

  6. Geyer JR, Sposto R, Jennings M, et al. Multiagent chemotherapy and deferred radiotherapy in infants with malignant brain tumors: a report from the Children's Cancer Group. J Clin Oncol. 2005 Oct 20. 23(30):7621-31. [Medline].

  7. Pollack IF, Hamilton RL, Sobol RW, et al. O6-methylguanine-DNA methyltransferase expression strongly correlates with outcome in childhood malignant gliomas: results from the CCG-945 Cohort. J Clin Oncol. 2006 Jul 20. 24(21):3431-7. [Medline].

  8. Akyüz C, Demir HA, Varan A, Yalçin B, Kutluk T, Büyükpamukçu M. Temozolomide in relapsed pediatric brain tumors: 14 cases from a single center. Childs Nerv Syst. 2012 Jan. 28(1):111-5. [Medline].

  9. Ait Khelifa-Gallois N, Laroussinie F, Puget S, Sainte-Rose C, Dellatolas G. Long-term functional outcome of patients with cerebellar pilocytic astrocytoma surgically treated in childhood. Brain Inj. 2014 Nov 10. 1-8. [Medline].

  10. Chen L, Du C, Wang L, Yang C, Zhang JR, Li N, et al. Human positive coactivator 4 (PC4) is involved in the progression and prognosis of astrocytoma. J Neurol Sci. 2014 Sep 19. [Medline].

  11. Bouffet E, Jakacki R, Goldman S, et al. Phase II Study of weekly vinblastine in recurrent/refractory pediatric low-grade gliomas. Neuro-Oncology. 2008. 10(3):450.

  12. Bredel M, Pollack IF, Hamilton RL, James CD. Epidermal growth factor receptor expression and gene amplification in high-grade non-brainstem gliomas of childhood. Clin Cancer Res. 1999 Jul. 5(7):1786-92. [Medline].

  13. Cokgor I, Friedman AH, Friedman HS. Gliomas. Eur J Cancer. 1998 Nov. 34(12):1910-5; discussion 1916-8. [Medline].

  14. Fernandez C, Figarella-Branger D, Girard N, et al. Pilocytic astrocytomas in children: prognostic factors--a retrospective study of 80 cases. Neurosurgery. 2003 Sep. 53(3):544-53; discussion 554-5. [Medline].

  15. Finlay JL, Boyett JM, Yates AJ, et al. Randomized phase III trial in childhood high-grade astrocytoma comparing vincristine, lomustine, and prednisone with the eight-drugs-in-1-day regimen. Childrens Cancer Group. J Clin Oncol. 1995 Jan. 13(1):112-23. [Medline].

  16. Finlay JL, Wisoff JH. The impact of extent of resection in the management of malignant gliomas of childhood. Childs Nerv Syst. 1999 Nov. 15(11-12):786-8. [Medline].

  17. Gilbertson RJ, Hill DA, Hernan R, et al. ERBB1 is amplified and overexpressed in high-grade diffusely infiltrative pediatric brain stem glioma. Clin Cancer Res. 2003 Sep 1. 9(10 Pt 1):3620-4. [Medline].

  18. Grill J, Couanet D, Cappelli C, et al. Radiation-induced cerebral vasculopathy in children with neurofibromatosis and optic pathway glioma. Ann Neurol. 1999 Mar. 45(3):393-6. [Medline].

  19. Gururangan S, Fisher MJ, Allen JC, Herndon JE 2nd, Quinn JA, Reardon DA, et al. Temozolomide in children with progressive low-grade glioma. Neuro Oncol. 2007 Apr. 9(2):161-8. [Medline].

  20. Guthrie BL, Laws ER Jr. Supratentorial low-grade gliomas. Neurosurg Clin N Am. 1990 Jan. 1(1):37-48. [Medline].

  21. Huncharek M, Wheeler L, McGarry R, Geschwind JF. Chemotherapy response rates in recurrent/progressive pediatric glioma; results of a systematic review. ALYSIS. 1999 Jul-Aug. 19(4C):3569-74. [Medline].

  22. Jacobson DM. Gliomas of the anterior visual pathways. Neurosurg Clin N Am. 1999 Oct. 10(4):683-98, ix. [Medline].

  23. Khatua S, Peterson KM, Brown KM, et al. Overexpression of the EGFR/FKBP12/HIF-2alpha pathway identified in childhood astrocytomas by angiogenesis gene profiling. Cancer Res. 2003 Apr 15. 63(8):1865-70. [Medline].

  24. Khaw SL, Coleman LT, Downie PA, Heath JA, Ashley DM. Temozolomide in pediatric low-grade glioma. Pediatr Blood Cancer. 2007 Nov. 49(6):808-11. [Medline].

  25. Komotar RJ, Mocco J, Carson BS, et al. Pilomyxoid astrocytoma: a review. MedGenMed. 2004. 6(4):42. [Medline].

  26. Kuo DJ, Weiner HL, Wisoff J, et al. Temozolomide is active in childhood, progressive, unresectable, low-grade gliomas. J Pediatr Hematol Oncol. 2003 May. 25(5):372-8. [Medline].

  27. Lafay-Cousin L, Holm S, Qaddoumi I, et al. Weekly vinblastine in pediatric low-grade glioma patients with carboplatin allergic reaction. Cancer. 2005 Jun 15. 103(12):2636-42. [Medline].

  28. MacDonald TJ, Arenson EB, Ater J, et al. Phase II study of high-dose chemotherapy before radiation in children with newly diagnosed high-grade astrocytoma: final analysis of Children's Cancer Group Study 9933. Cancer. 2005 Dec 15. 104(12):2862-71. [Medline].

  29. Nadkarni TD, Rekate HL. Pediatric intramedullary spinal cord tumors. Critical review of the literature. Childs Nerv Syst. 1999 Jan. 15(1):17-28. [Medline].

  30. Nicholson HS, Krailo M, Ames MM, et al. Phase I study of temozolomide in children and adolescents with recurrent solid tumors: a report from the Children's Cancer Group. J Clin Oncol. 1998 Sep. 16(9):3037-43. [Medline].

  31. Packer RJ. Brain tumors in children. Arch Neurol. 1999 Apr. 56(4):421-5. [Medline].

  32. Pencalet P, Maixner W, Sainte-Rose C, et al. Benign cerebellar astrocytomas in children. J Neurosurg. 1999 Feb. 90(2):265-73. [Medline].

  33. Pollack IF. The role of surgery in pediatric gliomas. J Neurooncol. 1999 May. 42(3):271-88. [Medline].

  34. Pollack IF, Boyett JM, Finlay JL. Chemotherapy for high-grade gliomas of childhood. Childs Nerv Syst. 1999 Oct. 15(10):529-44. [Medline].

  35. Pollack IF, Finkelstein SD, Woods J, et al. Expression of p53 and prognosis in children with malignant gliomas. N Engl J Med. 2002 Feb 7. 346(6):420-7. [Medline].

  36. Prados MD, Edwards MS, Rabbitt J, Lamborn K, Davis RL, Levin VA. Treatment of pediatric low-grade gliomas with a nitrosourea-based multiagent chemotherapy regimen. J Neurooncol. 1997 May. 32(3):235-41. [Medline].

  37. Reddy AT, Packer RJ. Chemotherapy for low-grade gliomas. Childs Nerv Syst. 1999 Oct. 15(10):506-13. [Medline].

  38. Rubin G, Michowitz S, Horev G, et al. Pediatric brain stem gliomas: an update. Childs Nerv Syst. 1998 Apr-May. 14(4-5):167-73. [Medline].

  39. Sharif S, Ferner R, Birch JM, et al. Second primary tumors in neurofibromatosis 1 patients treated for optic glioma: substantial risks after radiotherapy. J Clin Oncol. 2006 Jun 1. 24(16):2570-5. [Medline].

  40. Stupp R, Mason WP, van den Bent MJ, et al. Radiotherapy plus concomitant and adjuvant temozolomide for glioblastoma. N Engl J Med. 2005 Mar 10. 352(10):987-96. [Medline].

  41. Thorarinsdottir HK, Rood B, Kamani N, et al. Outcome for children 111111111111111111Pediatr Blood Cancer</i>. 2006 Feb 2. [Medline].

  42. Vredenburgh JJ, Desjardins A, Herndon JE 2nd, et al. Bevacizumab plus irinotecan in recurrent glioblastoma multiforme. J Clin Oncol. 2007 Oct 20. 25(30):4722-9. [Medline].

  43. Wisoff JH, Boyett JM, Berger MS, et al. Current neurosurgical management and the impact of the extent of resection in the treatment of malignant gliomas of childhood: a report of the Children's Cancer Group trial no. CCG-945. J Neurosurg. 1998 Jul. 89(1):52-9. [Medline].

 
Previous
Next
 
This MRI shows a juvenile pilocytic astrocytoma of the cerebellum.
This MRI shows a supratentorial glioblastoma multiforme.
This section displays the typical biphasic pattern of a juvenile pilocytic astrocytoma, consisting of dense, relatively anuclear, fibrillar areas alternating with looser cystic fields.
This section displays the high cellularity, mitosis, and nuclear atypia characteristic of an anaplastic astrocytoma (grade III).
This section displays a typical field of a glioblastoma multiforme (grade IV) with pseudopalisading neovascularity, nuclear atypia, numerous mitoses, and areas of hemorrhage.
 
 
 
All material on this website is protected by copyright, Copyright © 1994-2016 by WebMD LLC. This website also contains material copyrighted by 3rd parties.