Medscape is available in 5 Language Editions – Choose your Edition here.


Pediatric Myelodysplastic Syndrome Medication

  • Author: Prasad Mathew, MBBS, DCH, FAAP; Chief Editor: Jennifer Reikes Willert, MD  more...
Updated: Dec 10, 2015

Medication Summary

Children with myelodysplastic syndrome (MDS) have been treated with a wide variety of drugs. For children with an increased number of blasts, treatment like AML is commonly used. The most frequently used chemotherapeutic agents include idarubicin, dexamethasone, cytarabine arabinoside, fludarabine, etoposide, daunorubicin, L-asparaginase, and thioguanine.


Antineoplastic agents

Class Summary

Cancer chemotherapy is based on an understanding of tumor cell growth and of how drugs affect this growth. After cells divide, they enter a period of growth (G1 phase), followed by DNA synthesis (S phase). The next phase is a premitotic phase (G2 phase). Finally, a phase of mitotic cell division (M phase) occurs.

The rate of cell division varies for different tumors. Most common cancers grow slowly compared with normal tissues, and the rate may decrease further in large tumors. This difference allows normal cells to recover from chemotherapy more quickly than malignant cells, and it is in part the rationale for current cyclic dosage schedules.

Antineoplastic agents interfere with cell reproduction. Some agents are cell cycle specific, whereas others (eg, alkylating agents, anthracyclines, cisplatin) are not phase specific. Cellular apoptosis (ie, programmed cell death) is another potential mechanism of many antineoplastic agents.

Azacytidine, decitabine, and lenalidomide (for those with 5q- MDS) are approved for use in adults with myelodysplastic syndrome (MDS). There is currently no data on the safety and efficacy of these drugs in children with MDS.



An antimetabolite antineoplastic agent, cytarabine is converted intracellularly to the active compound cytarabine-5'-triphosphate, which inhibits DNA polymerase. It is metabolized in the liver, with a half-life of 1-3 h. The agent is widely distributed, including in the central nervous system and tears, after IV administration. It is not active via the oral route.

Pegaspargase (Oncaspar)


Pegaspargase is polyethylene glycol-L-asparaginase. It catabolizes asparagine, which is an essential amino acid for lymphoblast growth. This agent has a half-life of 2-3 wk.

Fludarabine (Fludara, Oforta)


Fludarabine is a 2-Fluoro, 5-phosphate derivative of vidarabine. It is converted to 2-fluoro-ara-A that enters cells; it is phosphorylated to form active metabolite 2-fluoro-ara-ATP, which inhibits DNA synthesis. The half-life of the active metabolite is 9 h.

Idarubicin (Idamycin)


Idarubicin is an anthracycline antineoplastic agent. It inhibits cell proliferation by inhibiting DNA and RNA polymerase. It is metabolized in the liver to active idarubicinol. It has half-life of 14-35 h (PO) or 12-27 h (IV). This agent is a vesicant.

Daunorubicin (Cerubidine)


An anthracycline antineoplastic agent, daunorubicin inhibits DNA and RNA synthesis by intercalating between DNA base pairs. It has a half-life of 14-20 h (23-40 h for active metabolite).

Dexamethasone (Baycadron)


A long-acting fluorinated corticosteroid, dexamethasone induces apoptosis of leukemia cells by means of glucocorticoid receptors. Dexamethasone 0.75 mg is equivalent to 4 mg methylprednisolone, 5 mg prednisolone, 30 mg hydrocortisone, or 25 mg cortisone.

Thioguanine (Tabloid)


Thioguanine is a purine analog with antineoplastic and antimetabolite properties.

Etoposide (Toposar)


Etoposide is a semisynthetic podophyllotoxin with poor penetration of the cerebrospinal fluid (CSF). It inhibits topoisomerase II and causes DNA strand breakage, which arrests cell proliferation in the late S or early G2 portion of cell cycle. It has a half-life of 4-11 h.

Azacitidine (Vidaza)


Azacitidine is approved for use in adults with myelodysplastic syndrome (MDS). It is a pyrimidine nucleoside analog of cytidine. It interferes with nucleic acid metabolism. This agent exerts its antineoplastic effects by DNA hypomethylation and direct cytotoxicity on abnormal hematopoietic bone marrow cells. Hypomethylation may restore normal function to genes critical for cell differentiation and proliferation. Nonproliferative cells are largely insensitive to azacitidine.

Azacitidine is approved for adults by the US Food and Drug Administration for treatment of all 5 MDS subtypes.

Decitabine (Dacogen)


Decitabine is approved for use in adults with myelodysplastic syndrome (MDS). It is a hypomethylating agent believed to exert antineoplastic effects by incorporating into DNA and inhibiting methyltransferase, resulting in hypomethylation. Hypomethylation in neoplastic cells may restore normal function to genes critical for cellular control of differentiation and proliferation.

This agent is indicated for treatment of MDSs, including previously treated and untreated, de novo, and secondary MDSs of all French-American-British (FAB) Cooperative Group MDS subtypes and International Prognostic Scoring System (IPSS) groups intermediate-1 risk, intermediate-2 risk, and high risk.

Lenalidomide (Revlimid)


Lenalidomide is approved for use in adults with myelodysplastic syndrome (MDS). It is indicated for transfusion-dependent MDS subtype of 5q- cytogenetic abnormality. It is structurally similar to thalidomide. This agent has immunomodulatory and antiangiogenic properties. It inhibits proinflammatory cytokine secretion and increases anti-inflammatory cytokines from peripheral blood mononuclear cells. The dose used in MDS is much lower than that used for multiple myeloma.

Contributor Information and Disclosures

Prasad Mathew, MBBS, DCH, FAAP Professor of Pediatrics, Division of Hematology/Oncology, University of New Mexico School of Medicine

Prasad Mathew, MBBS, DCH, FAAP is a member of the following medical societies: American Academy of Pediatrics, American Medical Association, American Society of Hematology, American Society of Pediatric Hematology/Oncology, International Society on Thrombosis and Haemostasis, American Society of Clinical Oncology, National Hemophilia Foundation, Hemophilia and Thrombosis Research Society, International Society of Paediatric Oncology, World Federation of Hemophilia

Disclosure: Received salary from Bayer HC for payment for services rendered.


Glenda H Grawe, MD Assistant Professor of Pediatrics, Baylor College of Medicine; Attending Physician, Department of Pediatrics, Section of Emergency Medicine, Texas Children's Hospital

Glenda H Grawe, MD is a member of the following medical societies: American Academy of Pediatrics, American College of Emergency Physicians, Minnesota Medical Association, National Association of EMS Physicians, Texas Pediatric Society, Harris County Medical Society

Disclosure: Received honoraria from Draeger for review panel membership.

Franklin O Smith, III, MD Clinical Director, University of Cincinnati Cancer Institute, Professor of Medicine, Associate Director, Hematology/Oncology Fellowship Training Program, Division of Hematology/Oncology, Department of Internal Medicine, University of Cincinnati College of Medicine; Professor of Pediatrics With Tenure, Cincinnati Children’s Hospital Medical Center, University of Cincinnati College of Medicine

Franklin O Smith, III, MD is a member of the following medical societies: American Academy of Pediatrics, American Association for Cancer Research, American Pediatric Society, American Society of Gene and Cell Therapy, American Society of Hematology, American Society of Pediatric Hematology/Oncology, American Society for Blood and Marrow Transplantation, American Society of Clinical Oncology, International Society of Paediatric Oncology

Disclosure: Received consulting fee from Wyeth Research for consulting; Received from Seattle Genetics for other.

Chief Editor

Jennifer Reikes Willert, MD Associate Clinical Professor, Department of Pediatrics, Division of Pediatric Hematology/Oncology, Section of Stem Cell Transplantation, Stanford University Medical Center, Lucile Packard Children's Hospital

Jennifer Reikes Willert, MD is a member of the following medical societies: American Academy of Pediatrics, American Society of Hematology, American Society for Blood and Marrow Transplantation, Children's Oncology Group, American Society of Pediatric Hematology/Oncology

Disclosure: Nothing to disclose.


Timothy P Cripe, MD, PhD Professor of Pediatrics, Division of Hematology/Oncology, Cincinnati Children's Hospital Medical Center; Clinical Director, Musculoskeletal Tumor Program, Co-Medical Director, Office for Clinical and Translational Research, Cincinnati Children's Hospital Medical Center; Director of Pilot and Collaborative Clinical and Translational Studies Core, Center for Clinical and Translational Science and Training, University of Cincinnati College of Medicine

Timothy P Cripe, MD, PhD is a member of the following medical societies: American Association for the Advancement of Science, American Pediatric Society, American Society of Hematology, American Society of Pediatric Hematology/Oncology, and Society for Pediatric Research

Disclosure: Nothing to disclose.

Kathleen M Sakamoto, MD, PhD Professor and Chief, Division of Hematology-Oncology, Vice-Chair of Research, Mattel Children's Hospital at UCLA; Co-Associate Program Director of the Signal Transduction Program Area, Jonsson Comprehensive Cancer Center, California Nanosystems Institute and Molecular Biology Institute, University of California, Los Angeles, David Geffen School of Medicine

Kathleen M Sakamoto, MD, PhD is a member of the following medical societies: American Society of Hematology, American Society of Pediatric Hematology/Oncology, International Society for Experimental Hematology, Society for Pediatric Research, and Western Society for Pediatric Research

Disclosure: Nothing to disclose.

Mary L Windle, PharmD Adjunct Associate Professor, University of Nebraska Medical Center College of Pharmacy; Editor-in-Chief, Medscape Drug Reference

Disclosure: Nothing to disclose.

  1. Bennett JM, Catovsky D, Daniel MT, et al. The chronic myeloid leukaemias: guidelines for distinguishing chronic granulocytic, atypical chronic myeloid, and chronic myelomonocytic leukaemia. Proposals by the French-American-British Cooperative Leukaemia Group. Br J Haematol. 1994 Aug. 87(4):746-54. [Medline].

  2. Hasle H, Niemeyer CM, Chessells JM, et al. A pediatric approach to the WHO classification of myelodysplastic and myeloproliferative diseases. Leukemia. 2003 Feb. 17(2):277-82. [Medline].

  3. Steliarova-Foucher E, Stiller C, Lacour B, Kaatsch P. International Classification of Childhood Cancer, third edition. Cancer. 2005 Apr 1. 103(7):1457-67. [Medline].

  4. Velloso ED, Chauffaille ML, Pelicario LM, et al. Cytogenetic studies of Brazilian pediatric myelodysplastic syndrome cases: challenges and difficulties in a large and emerging country. Braz J Med Biol Res. 2013 Jan. 46(1):85-90. [Medline].

  5. Dokal I. Dyskeratosis congenita in all its forms. Br J Haematol. 2000 Sep. 110(4):768-79. [Medline].

  6. Lange BJ, Kobrinsky N, Barnard DR, et al. Distinctive demography, biology, and outcome of acute myeloid leukemia and myelodysplastic syndrome in children with Down syndrome: Children's Cancer Group Studies 2861 and 2891. Blood. 1998 Jan 15. 91(2):608-15. [Medline].

  7. Smith OP. Shwachman-Diamond syndrome. Semin Hematol. 2002 Apr. 39(2):95-102. [Medline].

  8. Butturini A, Gale RP, Verlander PC, Adler-Brecher B, Gillio AP, Auerbach AD. Hematologic abnormalities in Fanconi anemia: an International Fanconi Anemia Registry study. Blood. 1994 Sep 1. 84(5):1650-5. [Medline].

  9. Freedman MH, Bonilla MA, Fier C, et al. Myelodysplasia syndrome and acute myeloid leukemia in patients with congenital neutropenia receiving G-CSF therapy. Blood. 2000 Jul 15. 96(2):429-36. [Medline].

  10. Willig TN, Niemeyer CM, Leblanc T, et al. Identification of new prognosis factors from the clinical and epidemiologic analysis of a registry of 229 Diamond-Blackfan anemia patients. Pediatr Res. 1999 Nov. 46(5):553-61. [Medline].

  11. Ohara A, Kojima S, Okamura J, et al. Evolution of myelodysplastic syndrome and acute myelogenous leukaemia in children with hepatitis-associated aplastic anaemia. Br J Haematol. 2002 Jan. 116(1):151-4. [Medline].

  12. Ohara A, Kojima S, Hamajima N, et al. Myelodysplastic syndrome and acute myelogenous leukemia as a late clonal complication in children with acquired aplastic anemia. Blood. 1997 Aug 1. 90(3):1009-13. [Medline].

  13. Kim M, Kook H, Park HJ, Ahn HS, Lee KC, Lee KS. Quantitative Comparison of CDKN2B Methylation in Pediatric and Adult Myelodysplastic Syndromes. Acta Haematol. 2013. 130:115-21. [Medline].

  14. Blank J, Lange B. Preleukemia in children. J Pediatr. 1981 Apr. 98(4):565-8. [Medline].

  15. Greenberg PL, Mara B. The preleukemic syndrome: correlation of in vitro parameters of granulopoiesis with clinical features. Am J Med. 1979 Jun. 66(6):951-8. [Medline].

  16. Hasle H, Kerndrup G, Jacobsen BB. Childhood myelodysplastic syndrome in Denmark: incidence and predisposing conditions. Leukemia. 1995 Sep. 9(9):1569-72. [Medline].

  17. Luna-Fineman S, Shannon KM, Atwater SK, et al. Myelodysplastic and myeloproliferative disorders of childhood: a study of 167 patients. Blood. 1999 Jan 15. 93(2):459-66. [Medline].

  18. Malcovati L, Della Porta MG, Cazzola M. Predicting survival and leukemic evolution in patients with myelodysplastic syndrome. Haematologica. 2006 Dec. 91(12):1588-90. [Medline].

  19. Bejar R, Stevenson K, Abdel-Wahab O, et al. Clinical effect of point mutations in myelodysplastic syndromes. N Engl J Med. 2011 Jun 30. 364(26):2496-506. [Medline]. [Full Text].

  20. Bresolin S, Trentin L, Zecca M, Giordan M, Sainati L, Locatelli F. Gene expression signatures of pediatric myelodysplastic syndromes are associated with risk of evolution into acute myeloid leukemia. Leukemia. 2012 Jul. 26(7):1717-9. [Medline].

  21. Hasle H, Arico M, Basso G, et al. Myelodysplastic syndrome, juvenile myelomonocytic leukemia, and acute myeloid leukemia associated with complete or partial monosomy 7. European Working Group on MDS in Childhood (EWOG-MDS). Leukemia. 1999 Mar. 13(3):376-85. [Medline].

  22. Yoshimi A, Baumann I, Führer M, et al. Immunosuppressive therapy with anti-thymocyte globulin and cyclosporine A in selected children with hypoplastic refractory cytopenia. Haematologica. 2007 Mar. 92(3):397-400. [Medline].

  23. Lang P, Greil J, Bader P, et al. Long-term outcome after haploidentical stem cell transplantation in children. Blood Cells Mol Dis. 2004 Nov-Dec. 33(3):281-7. [Medline].

  24. Yusuf U, Frangoul HA, Gooley TA, et al. Allogeneic bone marrow transplantation in children with myelodysplastic syndrome or juvenile myelomonocytic leukemia: the Seattle experience. Bone Marrow Transplant. 2004 Apr. 33(8):805-14. [Medline].

  25. Al-Seraihy A, Ayas M, Al-Nounou R, El-Solh H, Al-Ahmari A, Al-Jefri A. Outcome of allogeneic stem cell transplantation with a conditioning regimen of busulfan, cyclophosphamide and low-dose etoposide for children with myelodysplastic syndrome. Hematol Oncol Stem Cell Ther. 2011. 4(3):121-5. [Medline].

  26. Smith AR, Christiansen EC, Wagner JE, Cao Q, MacMillan ML, Stefanski HE. Early hematopoietic stem cell transplant is associated with favorable outcomes in children with MDS. Pediatr Blood Cancer. 2013 Apr. 60(4):705-10. [Medline].

  27. Strahm B, Locatelli F, Bader P, et al. Reduced intensity conditioning in unrelated donor transplantation for refractory cytopenia in childhood. Bone Marrow Transplant. 2007 Aug. 40(4):329-33. [Medline].

  28. Williamson PJ, Kruger AR, Reynolds PJ, Hamblin TJ, Oscier DG. Establishing the incidence of myelodysplastic syndrome. Br J Haematol. 1994 Aug. 87(4):743-5. [Medline].

  29. Hasle H, Kerndrup G, Yssing M, et al. Intensive chemotherapy in childhood myelodysplastic syndrome. A comparison with results in acute myeloid leukemia. Leukemia. 1996 Aug. 10(8):1269-73. [Medline].

  30. List A, Dewald G, Bennett J, et al. Lenalidomide in the myelodysplastic syndrome with chromosome 5q deletion. N Engl J Med. 2006 Oct 5. 355(14):1456-65. [Medline].

  31. Silverman LR, Demakos EP, Peterson BL, et al. Randomized controlled trial of azacitidine in patients with the myelodysplastic syndrome: a study of the cancer and leukemia group B. J Clin Oncol. 2002 May 15. 20(10):2429-40. [Medline].

  32. Kantarjian H, Issa JP, Rosenfeld CS, et al. Decitabine improves patient outcomes in myelodysplastic syndromes: results of a phase III randomized study. Cancer. 2006 Apr 15. 106(8):1794-803. [Medline].

  33. Bernal T, Martínez-Camblor P, Sánchez-García J, et al. Effectiveness of azacitidine in unselected high-risk myelodysplastic syndromes: results from the Spanish registry. Leukemia. 2015 Sep. 29 (9):1875-81. [Medline].

  34. Raymond J. Azacitidine May Not Improve Long-Term Survival In Myelodysplastic Syndromes. Reuters Health Information. Available at May 15, 2015; Accessed: December 11, 2015.

  35. Miller K, Haesook K, Greenberg P, et al. Phase III prospective randomized trial of EPO with or without G-CSF versus supportive care in the treatment of MDS: results of the ECOG-CLSG trial. Blood. 2004. 104:70.

All material on this website is protected by copyright, Copyright © 1994-2016 by WebMD LLC. This website also contains material copyrighted by 3rd parties.