Orbital Cellulitis Medication

Updated: May 29, 2019
  • Author: John N Harrington, MD, FACS; Chief Editor: Edsel B Ing, MD, MPH, FRCSC, PhD, MA  more...
  • Print

Medication Summary

Prompt administration of appropriate antibiotics is key to successful treatment of orbital cellulitis. Most cases of orbital cellulitis result from ethmoid sinusitis; in such cases, the initial antibiotics are chosen based on the most likely sinus pathogens, primarily Streptococcus pneumoniae and other streptococci, S aureus, H influenzae, and non-spore–forming anaerobes.

The occurrence of methicillin-resistant S aureus in orbital cellulitis is increasing, and empiric antimicrobial therapy should be directed against this organism if it is prevalent in the community. Infection due to methicillin-resistant S aureus is best treated with vancomycin and clindamycin.

Fungal orbital cellulitis also occurs and is primarily due to Mucor and Aspergillus species. Fungal infection requires antifungals, such as amphotericin.

Corticosteroids may be helpful, but they should not be started until after any surgery is performed and until the patient has been on appropriate antibiotics for 2-3 days.

If glaucoma develops secondary to orbital cellulitis, ocular antihypertensives should be administered promptly. In cases of posttraumatic orbital cellulitis, tetanus prophylaxis should be given according to standard protocol.


Antibiotics, Other

Class Summary

Appropriate antibiotics may include nafcillin (for Staphylococcus and Streptococcus species) and metronidazole (for anaerobes).

Ticarcillin-clavulanate would cover most gram-positive and gram-negative organisms and most anaerobes. Nafcillin in combination with ceftazidime is also appropriate, although chloramphenicol may be substituted for ceftazidime. Cefazolin can be used in place of nafcillin in cases of mild allergy to penicillin and vancomycin can be used in cases of severe penicillin allergy.

Vancomycin, clindamycin, and trimethoprim/sulfamethoxazole double-strength would be appropriate for susceptible penicillinase- and non-penicillinase-producing strains of methicillin-resistant S aureus.

It is prudent to consult with an infectious disease specialist for the latest antibiotic recommendations if in doubt.


Vancomycin is a tricyclic glycopeptide antibiotic for IV administration. It is indicated for the treatment of susceptible strains of methicillin-resistant (beta-lactam resistant) staphylococci in penicillin-allergic patients.

Clindamycin (Cleocin)

Clindamycin inhibits bacterial protein synthesis at the bacterial ribosomal lever, binding with preference to the 50S ribosomal subunit and affecting the peptide chain initiation process.


Nafcillin is a semisynthetic penicillin that is effective against a wide gram-positive spectrum, including Staphylococcus, pneumococci, and group A beta-hemolytic streptococci.

Ceftazidime (Fortaz, Tazicef)

Ceftazidime is a semisynthetic, broad-spectrum, beta-lactam antibiotic for parenteral injection. It has a broad spectrum of effectiveness against gram-negative aerobes, such as H influenzae; gram-positive aerobes, such as S aureus (including penicillinase and non-penicillinase-producing strains) and S pyogenes; and anaerobes, including Bacteroides species.


Chloramphenicol exerts a bacteriostatic effect on a wide range of gram-negative and gram-positive bacteria and is particularly effective against H influenzae.

Ticarcillin and clavulanate potassium (Timentin)

Ticarcillin is a semisynthetic, injectable penicillin that is bactericidal against gram-positive and gram-negative organisms, including H influenzae, S aureus (non-penicillinase producing), beta-hemolytic streptococci (group A), S pneumoniae, and anaerobic organisms, such as Bacteroides and Clostridium species. Clavulanate potassium is a beta-lactamase inhibitor that protects against resistance by beta-lactamase producing enzymes.


Cefazolin is a semisynthetic cephalosporin for intramuscular (IM) or IV administration. It has a bactericidal effect against S aureus (including penicillinase-producing strains), group A beta-hemolytic streptococci, and H influenzae.

Trimethoprim and sulfamethoxazole (Bactrim, Bactrim DS, Septra DS, Sulfatrim)

Trimethoprim/sulfamethoxazole inhibits bacterial growth by inhibiting the synthesis of dihydrofolic acid. The antibacterial activity of trimethoprim/sulfamethoxazole includes common urinary tract pathogens, except Pseudomonas aeruginosa.


Antifungals, Systemic

Class Summary

Fungal orbital cellulitis is a potentially lethal condition, and the principal organisms involved, Mucor and Aspergillus, require the use of antifungals.

Amphotericin B deoxycholate (AmBisome)

This is a lipid preparation consisting of amphotericin B within unilamellar liposomes. It delivers higher concentrations of the drug, with a theoretical increase in therapeutic potential and decreased nephrotoxicity.

Amphotericin is the antifungal medication of choice in the treatment of fungal orbital cellulitis. It is administered intravenously and, in cases of severe infection, may be appropriately provided before laboratory confirmation of fungal infection.


Decongestants, Intranasal

Class Summary

Nasal decongestants may help to open the sinus ostia and aid with drainage in cases of orbital cellulitis secondary to sinusitis.

Phenylephrine nasal (Neo-Synephrine, Nasal Decongestant, Sudogest PE, Sudafed PE)

This agent is beneficial in the treatment of nasal congestion that may cause blockage of the ostia of the sinus, interfering with sinus drainage.

Oxymetazoline (Afrin 12 Hour, Afrin Sinus, Neo-Synephrine 12 Hour Spray, QlearQuil, Dristan Spray)

Oxymetazoline is applied directly to mucous membranes, where it stimulates alpha-adrenergic receptors and causes vasoconstriction. Decongestion occurs without drastic changes in blood pressure, vascular redistribution, or cardiac stimulation.


Antiglaucoma, Carbonic Anhydrase Inhibitors

Class Summary

These agents reduce intraocular pressure (IOP).

Acetazolamide (Diamox Sequels)

Acetazolamide inhibits the enzyme carbonic anhydrase, reducing IOP by reducing the rate of aqueous humor formation. It is used for the adjunctive treatment of chronic simple (open-angle) glaucoma and secondary glaucoma and is employed preoperatively in acute angle-closure glaucoma when there is a desire to delay surgery in order to lower IOP.



Class Summary

Corticosteroids have anti-inflammatory properties and cause profound and varied metabolic effects. These agents modify the body's immune response to diverse stimuli. Corticosteroids may be helpful, but they should not be started until after any surgery is performed and until the patient has been on appropriate antibiotics for 2-3 days.

Prednisone (Rayos, Deltasone)

Prednisone inhibits phagocytosis of platelets and may improve RBC survival.

Prednisolone (Orapred ODT, Prelone, Millipred)

Prednisolone decreases autoimmune reactions, possibly by suppressing key components of the immune system. This agent does not need to undergo hepatic metabolism.