Lumbar Spine Fractures and Dislocations Clinical Presentation

Updated: Nov 22, 2017
  • Author: Federico C Vinas, MD; Chief Editor: Jeffrey A Goldstein, MD  more...
  • Print


Patients with lumbosacral fractures present with severe pain, deformity, and neurologic deficits related to compression of neural structures.

Fractures of the thoracolumbar junction can produce a mixture of cord and root syndromes caused by lesions of the conus medullaris and lumbar nerve roots. Complete damage of the conus medullaris is manifested as no motor function or sensation below L1. Patients with complete damage to the sacral portion of the cord have loss of control of bowel and bladder function and sacral motor paralysis of the lower extremities with preservation of some movement of the hips and knees and preserved knee jerks and sensation in the lumbar dermatomes.

Lower lumbar fractures may cause solitary or multiple root deficits. However, massive disk herniations, fracture-dislocations, and burst fractures in the lumbar region can cause a cauda equina syndrome with variable paraparesis, asymmetrical saddle anesthesia, radiating pain, and sphincter disturbances.


Physical Examination

The physical examination of a patient with an acute lumbosacral fracture usually is limited by severe pain. In the spinal examination, inspect the overlying skin for abrasions or contusions. Pay attention to general deviations from the normal spine curves. Muscle spasm from pain frequently flattens the spine, whereas spinal fractures may cause a kyphotic or scoliotic deformity. In addition, palpate the spine for areas of tenderness or fractured or displaced spinous processes.

Multiple traumatic injuries, [23] spinal shock, or sedation can make the initial neurologic examination difficult. Document any neurologic deficit according to the American Spinal Injury Association (ASIA) Motor Index. In all conscious patients, perform a motor examination. Muscle strength and weakness are graded from a strength of 5/5, considered normal, to a strength of 0/5, considered paralysis, as follows:

  • Grade 0 - No contraction
  • Grade 1 - Muscle contraction
  • Grade 2 - Ability to move through a full range of motion when gravity is eliminated
  • Grade 3 - Ability to move through full range of motion against gravity
  • Grade 4 - Ability to move against resistance
  • Grade 5 - Normal strength

The ASIA introduced the ASIA impairment scale, which consists of five degrees of impairment, as follows:

  • A - No motor or sensory function is preserved below the neurologic level of injury extending through the sacral segments S4-5
  • B - Sensory function, but not motor function, is preserved below the neurologic level of injury and extends through the sacral segments S4-5
  • C - Motor function is preserved below the neurologic level of injury, and most of the key muscles below the neurologic level have a muscle grade of less than 3
  • D - Motor function is preserved below the neurologic level of injury, and most of the key muscles below the neurologic level of injury have a muscle grade of 3 or higher
  • E - Normal motor and sensory function are preserved

In addition, a detailed neurologic evaluation should include the following:

  • Evaluation of sensory level
  • Assessment of posterior column function
  • Testing for normal and abnormal reflexes
  • Examination of rectal tone and perianal sensation

The cutaneous abdominal reflex, the ocavernosus reflex, the wink, and the presence of the Babinski sign also should be noted and documented. The Beevor sign consists of a cephalic movement of the umbilicus when the patient is asked to elevate his or her head in the supine position. The presence of this sign denotes paralysis of the lower abdominal muscles. Always include a rectal examination to check for rectal tone and voluntary sphincter function.

Repeat the neurologic examination and document the findings at regular intervals to monitor for improvement or deterioration in the patient's neurologic status over time.

Spinal shock can last 24-48 hours, suppressing all reflex activity below the level of the lesion. The return of reflex activity (bulbocavernosus and anal reflexes) in the absence of any return of sensation or motor function generally is a poor prognostic indicator. Some return of motor or sensory function below the level of the lesion indicates the possibility of some return of useful neurologic function.

In 2013, the AOSpine Spinal Cord Injury and Trauma Knowledge Forum developed a simple classification of thoracolumbar spine injuries that included three primary types of fractures and nine subtypes. [24] The three main types are as follows:

  • A (compression injuries) - Failure of anterior structures under compression
  • B (distraction) - Failure of the posterior or anterior tension band
  • C (translation) - Failure of all elements leading to dislocation or displacement

Type A injuries are subclassified as follows:

  • A0 - Insignificant injury
  • A1 - Wedge/impaction
  • A2 - Split/pincer
  • A3 - Incomplete burst
  • A4 - Complete burst

Type B injuries are subclassified as follows:

  • B1 - Pure transosseous disruption
  • B2 - Osseoligamentous disruption
  • B3 - Hyperextension

In addition, the following six neurologic grades are specified and should be considered in a complete assessment:

  • N0 - Neurologically intact
  • N1 - Transient neurologic deficit that is no longer present
  • N2 - Radicular symptoms
  • N3 - Incomplete spinal cord injury or any degree of cauda equina injury
  • N4 - Complete spinal cord injury
  • NX - Neurologic status unknown because of sedation or head injury