Wrist Fractures and Dislocations Treatment & Management

Updated: Jul 25, 2022
  • Author: Michael Morhart, MD, MSc, FRCSC; Chief Editor: Joseph A Molnar, MD, PhD, FACS  more...
  • Print

Medical Therapy

Scaphoid immobilization

Scaphoid immobilization includes a thumb spica cast to the interphalangeal joint to inhibit motion at the fracture site. Most include the metacarpophalangeal joint in the cast, leaving the interphalangeal joint either included or not. A long arm cast just above the elbow may also be used to prevent supination and pronation, thereby inhibiting any pronation/supination motion, which theoretically limits motion at the fracture site. As with inclusion of the thumb in the cast, controversy exists over whether to immobilize above or below the elbow. Careful indentation molding over the capitate (dorsally) may be used to depress the distal carpal row, thereby promoting anatomic fracture reduction.

Lunate immobilization

The initial treatment of Kienböck disease stage 1 may be initiated with a period of casting, especially in young patients. However, this has never really been shown to alter progression of disease, especially in symptomatic patients. Most believe that surgical intervention is required in the treatment of symptomatic Kienböck disease, regardless of stage.


Surgical Therapy

Surgical therapy varies by location.


Distal and Waist Fractures

Open reduction and internal fixation is indicated for unstable fractures or fractures presenting with more than 1 mm displacement. Operative intervention can also be considered for nondisplaced stable fractures to reduce the amount of time off work or sports.

A volar approach is adequate for most fractures, especially distal pole and waist fractures. A curvilinear skin incision that crosses the wrist obliquely allows access to the scaphoid tubercle between the radial artery and flexor carpi radialis tendon.

The radiocarpal capsule is reflected over the scaphoid tuberosity to the scaphotrapezium joint. If necessary, the fracture is reduced and a K-wire is drilled down one side through the fragments to stabilize the fracture. If using a Herbert screw, a Huene jig is used to secure the fragments in proper alignment, and a hole is tapped, followed by fixation using a Herbert screw (see image below). Alternatively, another K-wire (0.045 in) is placed down the central axis of the scaphoid (checked with fluoroscopy) and a cannulated, headless compression screw of appropriate length (3-4 mm shorter than the length of the scaphoid) is inserted. Care is taken not to overdrill the distal cortex with the leading edge of the screw. Again, alignment is critical, and variations in technique are common.

A is a lateral radiograph typical of transscaphoid A is a lateral radiograph typical of transscaphoid perilunate fracture dislocation of the wrist. B is a postoperative lateral radiograph of the injury following Herbert screw fixation.

The capsule is repaired, and the skin is closed subcuticularly. Postoperative casting as described above is used for 3-4 weeks to minimize fracture motion. Gentle range of motion exercises are then commenced.

Percutaneous (either dorsal or volar approach) techniques have also been described including with or without arthroscopic assistance.


Proximal Pole Fractures

The dorsal approach allows the best access. The superficial radial nerve is identified and then carefully protected. The third compartment in incised and EPL retracted radially. The interval between the first and second compartment is incised in a J-type fashion and the fractured proximal pole of the scaphoid identified. Care is taken not to injure the scapholunate ligament.

Careful ulnar deviation of the wrist then exposes the proximal scaphoid. A K-wire is drilled in a proximal to distal direction down through to the distal scaphoid tuberosity. One or two additional parallel K-wires can be used to prevent fracture displacement or rotation during screw placement. The technique of screw placement is as described above for the volar approach, and the choice of cannulated headless compression screw is at the surgeon's discretion. The screw is overdrilled for full insertion into the scaphoid. Closure and treatment as in the palmar approach completes the procedure.


Lunate Immobilization

Application of a short arm cast is the most commonly used method of immobilization. No consensus has been reached on the type of cast, length of cast, or period of immobilization needed to prevent nonunion.


Operative Acute Lunate Fracture

Open reduction of the lunate can be approached either through a dorsal or palmar incision. The use of cannulated headless compression screws likely represent the most common fixation devices presently used, though K-wire fixation may still be beneficial. Dorsal fractures may require repair of the radiotriquetral or dorsal radiolunotriquetral ligaments, while volar fractures may require repair of the lunotriquetral ligament.


Kienbock Procedures

Radial shortening

This may be performed with a dorsal or volar approach. It may be the procedure of choice in patients with ulnar-negative variance.

The dorsal approach requires a 10-cm incision over the dorsoradial aspect of the radius. Exposure is gained between the radial artery and flexor carpi radialis.

A compression plate and 2 screws are applied to the distal radius. After marking the level of osteotomy, one of the distal screws is removed and the plate rotated away. Two parallel cuts are made approximately 2-3 mm apart. The fragment is removed, the ends are realigned, and the plate is rotated back and secured proximally and distally. After closure, a short arm plaster cast is applied for 4-6 weeks.

The volar approach is through a longitudinal radiopalmar incision. The radial artery is protected and dissection is carried out ulnar to this structure down to the pronator quadratus. The periosteum is then incised along the brachioradialis insertion and the radius exposed subperiosteally. Shortening and fixation is as described for the dorsal approach.

A lateral radial closing wedge osteotomy has also been advocated, especially in patients presenting with ulnar-neutral variance.

Revascularization procedures

These procedures may be combined with other procedures aimed at unloading the lunate, such as joint leveling or intercarpal fusions, as an adjunct to allow the lunate to heal while maintaining a functional range of motion.

Originally described by Hori in 1979 and modified by others, the efficacy of the procedure remains controversial. A dorsal approach is preferred, with adequate exposure of the lunate. Necrotic bone within the lunate is curetted and packed with iliac or radial corticocancellous bone. A dorsal metacarpal arteriovenous pedicle is then implanted into the lunate. A corticocancellous bone graft from the ulnar side of the second metacarpal may also be incorporated. More recently, vascularization from the fourth and fifth extensor compartment artery (ECA) with a corticocancellous graft liberated from the dorsal distal radius has been described. [14] This relies on retrograde flow from the dorsal intercarpal arch from the fifth ECA to the fourth ECA.


Triscaphe (Scaphotrapeziotrapezoid Joint/STT) Arthrodesis

This is fusion of the scaphoid, trapezium, and trapezoid into a single bony unit, while the external dimensions of the original bones are maintained. The procedure begins with a dorsal transverse incision at the radial styloid. The articular and subchondral surfaces of the bone are removed using a rongeur.

Two K-wires are passed percutaneously and through the trapezoid. The spacer is placed into the scaphotrapezoid joint, and the scaphoid is reduced (with the wrist in full radial deviation and 45° dorsiflexion) to maintain external dimension of the bones. The pins are driven into the scaphoid, and the spacer is removed. The scaphoid should be in about 60º of flexion in relation to the long axis of the radius. The radial styloid (< 1 cm) should be removed with an osteotome to prevent styloid-scaphoid impingement.

Harvested corticocancellous bone is packed into the joint spaces between the scaphoid, trapezoid, and trapezium. The wrist capsule and extensor retinaculum is realigned and closed with sutures. The pins are cut beneath the skin level, and the skin incisions are closed. A long arm plaster cast is applied with the wrist in slight extension and radial deviation and the elbow at 90°. It is removed in 3-4 weeks.

Scaphocapitate arthrodesis

This approach is similar in dissection to that of STT arthrodesis. With a radioscaphoid angle of 50-60º, the articular and subchondral bone is removed with a rongeur between the scaphoid and capitate. One or two compression screws or interosseous staples may be used to provide fixation with or without cancellous bone graft. Postoperatively, the treatment course is similar to the STT fusion.

Capitate shortening

The capitate is exposed through a standard dorsal wrist exposure and ligament-sparing capsulotomy. At about the midpoint of the capitate body, a microsagittal saw is used to create an osteotomy. The proximal body is shortened 3 mm and the capitate is reduced and fixated with K-wires, interosseous staples, or headless compression screws. Capitate shortening with capitohamate fusion has also been described in reducing the load on the lunate.


Perilunate Dislocation (Lesser Arc) - Closed Reduction and Immobilization

The patient is placed supine, and the elbow is flexed to 90°. Continuous longitudinal traction in finger traps with 10-15 lb of weight for 10 minutes allows relaxation of the muscles. This usually requires intravenous sedation to aid in adequate relaxation.

Manual retraction is applied while the thumb of one hand applies pressure to the volar aspect of the wrist (stabilizing the lunate). The other hand maintains longitudinal traction while extending the wrist. As the wrist is gradually flexed, the capitate can snap back into the concavity of the lunate.

Proper cast application requires a 3-point support system with reduction pressure applied at the dorsal capitate, distal radius, and in a palmar direction over the pisiform. Postreduction radiographs are necessary to assess alignment. Closed reduction alone is currently not recognized as standard of care treatment. Once bony anatomy has been restored, the patient should ideally undergo operative intervention to repair the soft tissue structures (scapholunate and lunotriquetral ligaments) within 10 days of the trauma.


Perilunate Dislocation - Operative Procedure (ORIF)

Numerous combinations of lesser- and greater-arc disruptions are observed, and these require operative modifications based on the injury pattern.

Combined palmar and dorsal approach

Dorsally, a longitudinal incision is made between the dorsal third and fourth compartment. The extensor retinaculum is elevated, and the extensor pollicis longus is retracted. A longitudinal capsular (or capsular-sparing, if the traumatic tissues permit) incision is then performed, and flaps are elevated. Dorsal radiocarpal and intercarpal ligaments are usually preserved.

In the palmar aspect, an extended carpal incision is used and the transverse carpal ligament is incised. The flexor tendons and median nerve are usually retracted radially. Any unreduced component (lunate) can now be addressed with the aid of longitudinal traction. Again in the palmar aspect, a percutaneous K-wire is placed through the radius into the lunate to maintain reduction. A K-wire is then passed through the lunotriquetral joint. Any disrupted lunotriquetral ligament is then repaired.

Next, the midcarpal region is inspected again and further reduction is performed as necessary.

On the dorsal side, any scaphoid dissociation is reduced. To maintain the reduced position, K-wires are placed from the scaphoid to the lunate and from the scaphoid to the capitate. The scapholunate interosseous ligament is inspected and repaired to the scaphoid (using the ligament rim or with drill holes or even suture anchors) with nonabsorbable suture. If the ligament is avulsed from the lunate, a similar technique is used. The carpus is inspected for any further damage.

Usually, the horizontal rent in the volar capsule is also repaired with nonabsorbable suture. Incision sites and soft tissue are repaired in both the dorsal and palmar aspects.

Compression and a long arm splint are applied. Sutures are removed in several days, and a full long arm cast is applied. A short arm cast can be applied at 6 weeks, and pins can be removed at 6-8 weeks, followed by splint application. Follow-up care with a physiotherapist begins thereafter.


Perilunate Fracture Dislocation (Greater Arc)

Closed reduction and fixation of these injuries is not recommended.


Perilunate Fracture Dislocation - Operative Procedure (ORIF)

Transradial styloid fracture

Usually, only a dorsal incision is needed. The carpus is entered near the Lister tubercle. The radial styloid is reduced and fixed with K-wires or a screw. The capsule is incised, and the lunate is reduced and pinned to the distal radius. The scaphoid is then reduced and fixed to the lunate. Any necessary repair to the triquetral bone or ligaments is performed last.

Transscaphoid perilunate fracture (stage I lesion)

A dorsal longitudinal incision is made over the extensor compartments, and soft tissue is retracted. With capsular retraction, the lunate is exposed, reduced, and pinned to the proximal scaphoid with a K-wire. The lunocapitate and lunotriquetral joints are reduced and pinned. Appropriate ligamental repair is made at this time.

Next, a distally extended carpal tunnel incision is made, with retraction and exposure of the radial palmar carpal ligaments. If not torn, the radioscaphocapitate and radioscapholunate ligaments are incised. The scaphoid is held with a K-wire. Once reduction of the fracture is achieved, it is fixed either with a Heune jig and a Herbert screw or, alternatively, with another headless compression screw (see image below). Finally, the injured ligament disruptions are repaired as described above. A long arm thumb spica cast is recommended for at least 6 weeks, longer for comminuted fractures.

A is a lateral radiograph typical of transscaphoid A is a lateral radiograph typical of transscaphoid perilunate fracture dislocation of the wrist. B is a postoperative lateral radiograph of the injury following Herbert screw fixation.

Transscaphoid transcapitate (stage II lesion)

A similar initial dorsal approach is used as described above. Once the lunate is reduced, no pinning to the scaphoid is necessary. The capitate fracture is reduced, aligned, and percutaneously fixed to maintain alignment. At this point, a compressions screw is inserted in a retrograde fashion.

The lunate is now pinned to the distal radius. The proximal and distal scaphoid are pinned and fixed with a Herbert screw. A palmar incision is now performed, and palmar radiocarpal ligaments are repaired.


Isolated Carpal Fractures

Triquetral, pisiform, and hamate fractures heal well with cast immobilization and rarely require surgical intervention. ORIF for hamate fractures is performed with K-wires or screw fixation. ORIF for capitate fractures is performed with the screw inserted proximal to distal.


Management of Isolated Carpal Dislocations


Closed reduction can be attempted with the wrist in traction and pressure over the scaphoid while the wrist is in ulnar deviation. If successful, pin fixation may be adequate; however, open reduction and repair is recommended. Open reduction has the benefit of allowing assessment and repair of the scapholunate interosseous and scaphotrapezium ligaments. A K-wire is fixed to the scaphotrapezium and scapholunate joints.


Most of the other carpal dislocations require similar operative reduction, K-wire fixation, and ligamental repair. Casting is recommended for 8 weeks.


Axial Dislocation and Fracture Dislocation

Treatment requires proper anesthesia (eg, axial block) and radical debridement of dead tissue. The injury is reduced as much as possible, and further operative intervention is almost always required. Preoperative antibiotics are given.

Operative (ORIF)

Surgical repair is via a dorsal approach. Further reduction is performed (if required), and K-wires are used to fix the positions. A variety of screws and small plates are used for fixation.

Ligamentous structures are salvaged and repaired as much as possible. Then, tendons and neurovascular structures are repaired, often requiring grafts. Loose skin closure with grafting or flap transfer is performed. K-wires remain for 6 weeks, and casting for immobilization remains for even longer. Extensive physiotherapy and occupational therapy is required for full return of function.



Scaphoid fracture

The first complication encountered with scaphoid fractures is failure to initially recognize and treat the injury. Suboptimal radiographs are usually to blame. This, along with insufficient reduction and inadequate or early mobilization, result in dreaded complications. These include delayed union, nonunion, malunion, [15] avascular necrosis of the scaphoid, progressive carpal instability (dorsal intercalated segment instability), and late degenerative changes.

Clinically, all manifest as weakness, chronic pain, and limited motion of the hand. Osteosynthetic techniques such as Russe bone grafting and, more recently, vascularized bone grafts during operative repair have been described, with successful prevention of these complications.

Operative complications include sensory neuritis, displaced grafts and recurrence of deformity, and carpal collapse from instability after palmar capsule ligament injury. Capsular stiffness after surgery and casting is common but improves with physiotherapy and time.

Late salvage procedures include radial styloidectomy, scaphoid excision and 4-corner fusion, proximal row carpectomy, midcarpal arthrodesis, and total wrist fusion.

Lunate fracture and avascular necrosis

The most relevant complication of lunate fractures is associated with the relative difficulty in diagnosing the injury based on findings from simple radiographs. Unrecognized injury and repetitive strain may lead to Kienböck disease and, ultimately, arthritic, painful degeneration of the wrist.

Tearing of the palmar radiolunate ligament during injury to the proximal pole can result in a dorsal and ulnar shift in the position of the lunate and a palmar tilt of the proximal fragment. Complications such as carpal tunnel syndrome and radiocarpal arthrosis, in addition to nonunion and Kienböck disease, can occur.

Important complications of the radial shortening procedures include neurovascular injury and delayed union and nonunion at the osteotomy site.

Complications of arthrodesis include infection, hematoma, transient neurapraxia, scapholunate instability, and nonunion. However, these are relatively rare.

Perilunate dislocation and fracture dislocation

Similar to most carpal injuries, failure to recognize these dislocations and fracture dislocations is the earliest complication. A late presentation of chronic injury may require salvage procedures.

Perilunate injury can result in median nerve compression and neuropathy. This usually resolves with reduction, but it may require carpal tunnel release if chronic in nature. Avascular necrosis of the scaphoid and lunate can occur and is treated within the context of individual injury. The lunate usually has good blood supply, and ischemia is often only transient; the development of Kienböck disease is exceptionally rare.

A significant complication may be carpal instability within or between carpal rows (dissociative and nondissociative, respectively) and, ultimately, painful arthrosis. This requires a limited intercarpal arthrodesis, total arthrodesis, or, possibly, an implant wrist arthroplasty.

Chronic perilunate dislocations are difficult to manage. Early dislocation can be operatively reduced and repaired, but late dislocations may require proximal row carpectomy, 4-corner fusion, or total wrist arthrodesis.

Isolated carpal fractures

Complications with triquetral fractures are rare. The most significant concern is ulnar carpal instability. Arthrosis can result from untreated triquetral fracture, and simple excision is suggested.

Hamate fractures can be complicated with ulnar neuropathy, tendon rupture, and a weak grip.

Complications of capitate fractures include avascular necrosis, malrotation of the distal fragment, and arthrosis.

Isolated carpal dislocations

Most carpal dislocations do well if treated appropriately; complications are rare. Undiagnosed palmar triquetral dislocations can manifest as carpal tunnel syndrome, at which point excision is recommended.

Late presentation of trapezoid dislocation may include avascular necrosis. Arthrodesis is recommended over excision because the latter may lead to metacarpal migration and subsequent carpal arthritis.

Axial dislocation and fracture dislocation

Axial fractures and dislocations can be complicated by associated neurovascular, muscular, and/or tendinous injury. These are more common with axial ulnar dislocation. Later complications, after treatment, include tendon and nerve adhesions, stiff joints, rotational deformities of the finger, fibrous contraction of the thenar eminence (axial radial), and carpal instability.


Outcome and Prognosis

Most wrist injuries have a positive outcome if diagnosed and treated early. Complications and late presentation can lead to devastating degenerative changes in the wrist.

A study by Bae et al found that pediatric patients with scaphoid fractures achieved excellent functional outcomes by median 6.3-year follow-up, whether they were treated with casting or surgery. The study involved 63 patients (aged 8-18 years at treatment), including 39 with acute scaphoid fracture and 24 with chronic fracture nonunion; six of the acute fractures and 20 of the nonunions were treated with surgery, with the rest undergoing casting. All bones in the study healed successfully; patient outcomes were the same for casting and surgery, with over 95% of patients reporting wrist function equal or superior to that of the general population. However, presentation with chronic nonunion was found to independently predict an outcome level below that in acute fracture, although chronic nonunion patients still achieved a median level of function comparable to that in the general population. [16]

A literature review by Jauregui et al indicated that in adolescent and preadolescent patients, surgical treatment with or without bone grafting is effective in healing scaphoid fracture nonunions. The study included patients under age 18 years with scaphoid fracture in whom cast immobilization had produced no clinical or radiographic improvement in over 3 months. The investigators reported that surgery using nonvascularized bone graft led to a 94.8% union rate, compared with 94.6% for patients who underwent rigid fixation without grafting. Both groups of patients showed significant improvement in range of motion and grip strength. [17]

A literature review by Pradhan et al indicated that persistent pain and functional limitations are often reported up to a year and a half after wrist fracture. The investigators concluded that current rehabilitation protocols for patients with wrist fracture have limited effectiveness, finding rehabilitative exercise/manual therapy to have only small effects with regard to functional improvement and pain reduction. [18]


Future and Controversies


An important trend in the management of wrist fractures and dislocation is the use of wrist arthroscopy. Arthroscopy, though initially intended as a diagnostic tool, has increasing application as a therapeutic tool also. This includes soft tissue repair (interosseous ligaments and the TFCC) as well as bony repair (ORIF of scaphoid). Its benefit will lead to more accurate reduction of structures and, potentially, less down time for patients. This is an active field of study and growth and appears to have tremendous potential.


Revascularization techniques such as vascular bone grafting for avascular necrosis of the scaphoid and lunate have been described and developed by a variety of researchers. Although successes have been reported using these methods, a final consensus has not been reached on the efficacy of these techniques. However, the use of these techniques continues to grow; they are becoming important tools among practicing hand surgeons' current armamentarium.


Regarding Kienböck disease, researchers have not yet determined which salvage procedure is the most efficacious for end-stage carpal collapse. However, weighing the benefits of pain management versus the loss of function, or vice versa, may ultimately remain the patient's burden. Certainly, proximal row carpectomy, if available, is at the top of the list. Total wrist fusion is an alternative option.

Electrical stimulation

Pulsed electromagnetic stimulation with small, implanted electrodes has been described for the treatment of scaphoid nonunion sites. This osteosynthetic technique remains controversial but is advocated by some in instances in which alternate methods of treating nonunion have failed.