Omental (Graham) Patch Technique

Updated: Sep 25, 2019
  • Author: Razvan C Opreanu, MD, MS; Chief Editor: Kurt E Roberts, MD  more...
  • Print
Technique

Standard Approach

After the patient is placed in supine position on the operating table, the abdomen is prepared and draped in a standard fashion. Transverse epigastric or subcostal incisions have been described. However, an upper midline incision is the preferred route for entry into the peritoneal cavity in this setting. In addition to providing good surgical exposure, an upper midline incision also permits extension inferiorly if a perforated ulcer is not found and the remainder of the bowel is to be inspected or manipulated.

Suctioning of gastrointestinal (GI) spillage and of any fibrinous exudates is quickly performed, and attention is turned to inspection of the duodenum and visualization of the perforation. The perforation can be usually found on the anterior wall of the duodenum, in proximity to the duodenal bulb. If the perforation is not apparent, mobilization of the duodenum along with inspection of the stomach and jejunum should be carried out next.

Once the bowel perforation is identified, sponges can be used to flank the duodenum to prevent further spillage of gastroduodenal contents. Materials commonly used for repair are nonabsorbable sutures (eg, silk) or monofilament absorbable sutures (eg, polydioxanone). The suture can be either a 2-0 or 3-0 on a small half-circle swaged needle.

In the original description of the technique, the full-thickness bites were placed approximately 0.5 cm away from the edges of the perforation from one margin to the other. A theoretical hazard with the full-thickness bites is passing the needle through the posterior duodenal wall. Commonly, three or four sutures are placed perpendicularly between the edges of the perforation and are laid out on each side of the duodenum (see the image below).

Initial step of the repair with placement of sutur Initial step of the repair with placement of sutures through the wall defect left untied for securement of the omentum.

A patch of omentum is brought without tension and positioned over the perforation, and the sutures are successively tied from the superior to the inferior aspect across the omental patch to anchor the omental graft in place (see the images below)

Final repair as seen from anterior with omentum se Final repair as seen from anterior with omentum secured in place on to the defect itself.
Final repair of the defect as seen from above. Final repair of the defect as seen from above.

An important feature of a sturdy repair is reliant on the tying technique. The applied tension to the sutures should be strong enough to stabilize the omentum in place but loose enough to preserve the omental blood supply. Strangulation of the omental patch from increased tension on the knots is associated with failure of the repair and continued postoperative leakage. In the classical repair, the sutures are not passed through the omentum but only tied around it. Another variation is to use seromuscular sutures rather than full-thickness bites on the duodenum.

After surgical repair has been accomplished, some surgeons perform a leak test to allow detection of technical errors. This can be accomplished either with endoscopic insufflation of air or with instillation of methylene blue proximal to the perforation and manual distal compression of the duodenum. Other surgeons, however, argue that this step is unnecessary, because the repair need not initially be completely occlusive against hydrostatic pressure. These surgeons argue that the goal of the repair is to secure the omentum across the perforation, allowing it subsequently to adhere to the inflamed serosa and thereby seal the perforation.

The peritoneal cavity is then irrigated with 10 L of warm saline solution to remove further contamination. Particular care is taken to irrigate the suprahepatic and infrahepatic recesses, the lesser sac, the paracolic gutters, and the pelvis.

Optionally, drainage of the areas close to the perforation can be attempted if a concern about possible leakage from the ulceration exists. For this purpose, a Jackson-Pratt drain is sometimes placed in the paraduodenal area or infrahepatic space. The purported advantages of such drainage include the early detection of a postoperative leak and provision of controlled drainage using the closed suction drain if a leak does occur. However, drainage should be selective because routine placement of drains has been found to be associated with significant morbidity and infection with no changes in incidence of postoperative intra-abdominal abscesses. [11]

The abdomen is then closed in the usual fashion with continuous or interrupted sutures of polypropylene or polydioxanone. If substantial edema of the bowel causes tension on the fascial edges upon attempted closure, then the abdomen may be managed open by means of various techniques, including vacuum-assisted closure, the Wittmann patch, and a number of other options.

Next:

Variations on Standard Approach

A variant of the classical technique that is used by some surgeons is the modified omental patch. After sutures are placed between the edges of the perforation in a standard fashion, they are tied in an attempt to close the wall defect. Without cutting of the sutures, a segment of omentum is then brought on top of the closed perforation and tied knots, and the same sutures are used to tie down the omental patch over the already approximated perforation.

Opponents of this modified technique express concern regarding the seal obtained from the omentum when suture knots are interposed between the duodenal serosa and the omental patch. Furthermore, the apposition of omentum is not as broad as with the original omental patch. To date, however, the literature has not provided definitive conclusions regarding the differences in morbidity or mortality associated with each of these techniques.

Another variant of the standard technique is the use of seromuscular (Lembert) suture placement instead of full-thickness bites. This is accomplished without entry into the duodenal lumen, and these sutures theoretically have a lower risk of passing the needle through the posterior wall, minimizing the risk of obstruction. Seromuscular sutures are generally used during laparoscopic repair of perforated duodenal ulcers.

Another variant, used when the omentum is not available (because of previous surgery, necrosis, or unfavorable anatomy), is the Thal patch, in which a loop of jejunum is used to patch the perforation (see the image below). In this case, seromuscular sutures are used to attach the serosal side of a loop of jejunum across the ulcer defect.

Thal patch: loop of small bowel covering the defec Thal patch: loop of small bowel covering the defect.
Previous
Next:

Laparoscopic Approach

Laparoscopic omental patch closure of perforated duodenal ulcer has become increasingly common as the field of minimally invasive surgery has grown. Initial reports demonstrated little difference between laparoscopy and laparotomy for omental patching; however, subsequent reports suggested that selected patients approached laparoscopically exhibit shorter length of stay, less postoperative pain, and earlier return to daily activities. [12, 13, 14, 15, 16, 17, 18]

Patient selection plays an important role in the success of laparoscopic omental patching. Delayed (>24 hours) presentation, hemodynamic instability, high acute physiology, and chronic health evaluation scores are each associated with significantly increased likelihood of postoperative leak, and laparotomy is therefore indicated in such patients. [19]

In addition, skill in laparoscopic technique is also required for such procedures. Some surgeons perform intraoperative esophagoduodenoscopy (EGD) to aid in identification of the perforation and stabilization of the omental patch until laparoscopic suturing can be performed. [20]  The need for intraoperative EGD is dictated by the experience of the laparoscopic surgeon and difficulty of the case.

At present, both open and laparoscopic approaches to omentopexy are within the standard of care, depending on the experience of the surgeon and the condition of the patient. Laparoscopic omental patch repair appears to be safe and effective as treament for perforated peptic ulcer in children as well as in adults. [21]

Previous
Next:

Postoperative Care

Resuscitation

After the procedure, the resuscitation that began in the early preoperative phase is continued with the use of crystalloid solutions. The goals of resuscitation focus on urinary output, lactic acid levels, mean arterial pressure (MAP), and central venous pressure (CVP) parameters. Vasopressors may sometimes also be required, depending on the patient’s hemodynamic status and response to resuscitative intervention.

Nutrition

Many patients requiring this type of repair were malnourished before their perforation, and others become malnourished during a prolonged postoperative septic and catabolic state. Attention to nutrition is therefore important. Healing of the duodenal perforation or operative incision must be augmented by improved nutritional status in the early postoperative period.

Oral feeding is likely to be delayed because of the need for the ileus to resolve and the omental patch to heal. Some patients may benefit from intraoperative placement of a jejunostomy feeding tube. This is especially worth considering in elderly or debilitated patients who are expected to have a prolonged hospitalization and deprivation of oral nutrition.

The disadvantages associated with adjunctive surgical jejunostomy feeding tubes include prolongation of the operative case, as well as the complications of jejunostomy, including leaks, obstruction, and internal herniation. Many patients requiring an omental patch are initially hemodynamically unstable, and an approach with minimal intraoperative time under general anesthesia is often preferred.

An alternative to jejunostomy feeding is intraoperative or postoperative placement of a double-lumen gastrojejunal tube to allow simultaneous decompression of the stomach and delivery of enteric nutrients distally to the omental patch repair. Parenteral nutrition is sometimes alternatively used, but as a rule, enteral nutrition distal to the perforation is preferable if possible.

Antimicrobial therapy

Duodenal perforation with localized or generalized peritonitis and spillage of enteric contents in hemodynamically unstable patients found in sepsis or septic shock is considered a complicated intra-abdominal infection. According to guidelines from the Infectious Diseases Society of America (IDSA) and the Surgical Infection Society (SIS), antimicrobial therapy should be continued postoperatively for 24 hours when the perforation has been surgically closed in the first 12 hours. [22]

If resolution of clinical signs of infection, including normalization of white blood cell count and temperature, does not occur after 24 hours postoperatively, antimicrobials can be continued for 4-7 days. Either a combination of a beta-lactam with a beta-lactamase inhibitor (eg, amoxicillin-clavulanate) or a carbapenem (eg, ertapenem or imipenem) is preferred. (See Antibiotic Therapy for Peritonitis.) Some authors suggest that in patients with positive peritoneal fungal cultures or an elevated Mannheim Peritonitis Index score, antifungal therapy could also be of benefit, [23] though this suggestion is controversial.

In cases where there is evidence of persistent or recurrent infection after 4-7 days of therapy, the presence of abscesses or missed intraoperative injuries is certainly a possibility. At the same time, other sources of infection, like urinary or respiratory tract, catheters, and lines, should be investigated after intra-abdominal insults are ruled out.

H pylori eradication should also be considered. Some surgeons may opt for empiric postoperative eradication with anti-secretory medications and antibiotics once the patient is tolerating an oral diet, while others choose to test for H pylori and then treat only patients who test positive for H pylori. Eradication significantly decreases morbidity, mortality, and ulcer recurrence in patients with perforations associated with H pylori. [3, 4]  (See Helicobacter Pylori Infection.)

Previous