Phototherapy for Jaundice Periprocedural Care

Updated: May 01, 2018
  • Author: Taylor L Sawyer, DO, MEd, FAAP, FACOP; Chief Editor: Dharmendra J Nimavat, MD, FAAP  more...
  • Print
Periprocedural Care

Patient Education & Consent

Patient Instructions

Elements of Informed Consent

According to the American Academy of Pediatrics Clinical Practice Guidelines on the management of hyperbilirubinemia in infants 35 or more weeks’ gestation, all hospitals should provide verbal or written information to parents explaining jaundice, the need to monitor infants for jaundice, and details on how that monitoring should be done. [6] An a example of such a handout is provided by the American Academy of Pediatrics.



Several devices can be used to provide phototherapy. These include tungsten-halogen lamps, fluorescent tubes, fiberoptic systems, and gallium nitride LED lights. All these devices are capable of emitting light in the 430-490 nm band at standard spectral irradiance levels of 8-10 mW/cm2 per nm. However, when intensive phototherapy is required either ”special blue” fluorescent tubes or specially designed LED devices should be used because these are the only devices that can reliably provide more than 30 mW/cm2 per nm in the 430-490 nm band.4 16

Halogen-based phototherapy lamps

Halogen-based phototherapy lamps, or spotlights, use a commercially available tungsten- halogen light bulb and direct a strong beam of white/yellow light towards the infant. These devices are typically free-standing on a pole, or available as part of a radiant warmer. Halogen-based spot lights are the most heat producing of all the available phototherapy lights. Care must be taken not to place the devices closer to the infant than recommended by the manufacturer to avoid overheating the infant. Additionally, due to the associated heat output, halogen lights may result in increased insensible water loss in infants receiving phototherapy.

See the image below.

Infant under Ohmeda halogen lamp with eye protecti Infant under Ohmeda halogen lamp with eye protection.

Fluorescent tubes

Fluorescent tubes used to deliver phototherapy have been classified as ”daylight,” ”blue,”’ and ”special blue.” A commercially available daylight tube is the F20T12/D (General Electric, Westinghouse, Sylvania). A commercially available blue florescent tube is the F20T12/B (General Electric, Westinghouse, Sylvania). Special blue fluorescent tubes include those labeled TL52/20W (Philips, Endhoven, The Netherlands) or F20T12/BB (General Electric, Westinghouse, Sylvania).

In prior clinical studies, only the special blue fluorescent tubes were able to reliably emit light at more than 30 mW/cm2 per nm in the 430-490 nm band. [16] Special blue tubes are most effective because they emit light in the blue-green spectrum, which penetrates skin well and is maximally absorbed by bilirubin. Fluorescent tubes are typically housed in a commercially available device which holds 4-8 tubes that are 24 inches. The device is typically attached to a pole and the height of the lighting device can be adjusted up and down. One commercially available device, the Bili Bassinet (Olympic Medical; Seattle, WA), contains special blue fluorescent tubes in a housing both above and below the infant.

Fiberoptic phototherapy

Fiberoptic phototherapy devices deliver light form a high intensity lamp to a fiberoptic blanket. These BiliBlanket devices are typically used in conjunction with overhead halogen, fluorescent, or LED systems. These devices are also commonly used to provide home phototherapy. A disadvantage of using fiberoptic pads is that they cover a fairly small surface area. Therefore, 2-3 pads may be needed to provide effective phototherapy. [16] This is one reason why home phototherapy is reserved only for use in low-risk infants with total bilirubin levels 2-3 mg/dL lower than that recommended for intensive phototherapy. [6] See the image below.

Infant under neoBLUE phototherapy light and lying Infant under neoBLUE phototherapy light and lying on fiberoptic phototherapy blanket.

LED phototherapy systems

LED phototherapy systems, which use gallium nitride LEDs, are the newest devices used to provide phototherapy. Gallium nitride LEDs emit high-intensity light in the blue-green portion of the spectrum within a narrow wavelength (460-485 nm). [17] LEDs offer some advantages to other phototherapy sources. Their narrow wavelength of emission is close to the wavelength at which light is maximally absorbed by bilirubin. Additionally, the spectral quality of the LED device can be customized by the use of varying proportions of blue, blue-green, and green LEDs. Also, LEDs generate less heat than either halogen or fluorescent lamps, and can thus be positioned very close to the skin without significant risk of overheating or burns.

Prior studies have shown that using an array of 600, 3-mm blue LEDs, at a short distance from an infant can achieve an irradiance of more than 200 mW/cm2 per nm. [17] Specially designed LED systems, such as the neoBLUE LED Phototherapy system (Natus Inc; San Carlos, CA), are recommended by the American Academy of Pediatrics for use during intensive phototherapy. [6] See the image below.

neoBLUE light-emitting diode (LED) phototherapy sy neoBLUE light-emitting diode (LED) phototherapy system.

Patient Preparation


Infants receiving phototherapy should be placed lying flat on a radiant warmer or in a bassinet. Small or premature infants can remain in an infant incubator during phototherapy. The infant should be naked with the exception of eye protection and a diaper to maximize the surface area of skin exposed to light. The phototherapy device should be placed at the side of the infant’s bed with the light shining on the infant and covering as much surface area as possible.

When fluorescent tubes or LED devices are used, the infant should be placed as close as possible to the light source, typically within 10 cm. [6] This increases the spectral irradiance of the light delivered. Halogen-based devices emit greater amounts of heat than fluorescent or LED devices and therefore need to be positioned at a greater distance from the infant. Providers should follow the manufacturer’s recommendations on how far to position the halogen light source from the infant.

Fiberoptic pads can be positioned directly underneath the infant to provide an additional source of phototherapy. The fiberoptic pads do not emit significant heat. Due to their relatively hard surface, phototherapy pads should be used with caution in extremely low birth weight infants or other infants who are at risk for skin break down from pressure sores.

If phototherapy is provided through the top of an infant, incubator the light source should be kept perpendicular to the surface of the isolette to decrease light reflectance off the plastic, which diminishes the amount of light that reaches the infant inside the isolette. In cases of severe hyperbilirubinemia, white towels or aluminum foil can be placed around the interior of the bassinet to reflect light back on the infant and increase surface area exposure. [6]


Monitoring & Follow-up

Monitoring of serial bilirubin values in infants on phototherapy is important to confirm that the therapy is effective. With intensive phototherapy (>30 mW/cm2 per nm), a decrease in bilirubin concentration by 30-40% can be expected within the first 24 hours. [6] The most significant drop in bilirubin concentration is typically seen within the first 4-6 hours of phototherapy. [6] Thus, bilirubin concentrations are typically checked prior to the start of phototherapy, after 4-6 hours of phototherapy to confirm effectiveness, and then repeated at 12-24 hour intervals until levels are low enough to stop phototherapy. Although no standard is noted for the discontinuation of phototherapy, current guidelines suggest stopping phototherapy on infants 35 or more weeks’ gestation at birth readmitted after their birth hospitalization when the levels of total bilirubin fall below 13-14 mg/dL. [6]

For infants with hemolytic disease, and in those younger than 3-4 days, a ”rebound” bilirubin should be checked within 24 hours after discontinuation of phototherapy. [6] This 24-hour rebound bilirubin check can also be considered in infants 35 or more weeks’ gestation at birth with nonhemolytic jaundice who are readmitted with hyperbilirubinemia. [6]

No evidenced-based guidelines to indicate when phototherapy should be discontinued in premature infants. In general, phototherapy is stopped when the total serum bilirubin level is several points lower than when it was started. Most practitioners routinely check a rebound bilirubin in all premature infants within 24-48 hours after discontinuation of phototherapy, or sooner if a hemolytic process is present.

A study by Chang et al developed a prediction rule to estimate the probability of rebound hyperbilirubinemia after inpatient phototherapy. The prediction rule consists of 3 variables, gestational age 18</ref>