Postcholecystectomy Syndrome Treatment & Management

Updated: Jul 25, 2022
  • Author: Steen W Jensen, MD; Chief Editor: John Geibel, MD, MSc, DSc, AGAF  more...
  • Print
Treatment

Approach Considerations

Postcholecystectomy syndrome (PCS) is usually a temporary diagnosis. An organic or functional diagnosis is established in most patients after a complete workup. Once a diagnosis has been established, treatment should proceed as indicated for that diagnosis. Treatment may be either medical or surgical.

Next:

Pharmacologic Therapy

Patients with irritable bowel syndrome may benefit from the administration of bulking agents, antispasmodics, or sedatives. The irritable sphincter may respond to high-dose calcium channel blockers or nitrates, but the available evidence is not yet convincing. Cholestyramine has been helpful for patients with diarrhea alone.

Antacids, histamine 2 (H2) blockers, or proton pump inhibitors (PPIs) can occasionally provide relief for patients with gastroesophageal reflux disease (GERD) or gastritis symptoms. One study showed that lovastatin might provide at least some relief in as many as 67% of patients.

For patients with dyspeptic symptoms, Abu Farsakh et al showed that symptoms correlated with gastric bile salt concentration. [6]

Previous
Next:

Surgical Intervention

Like medical therapy, surgical therapy should be directed at the specific diagnosis. [17, 18] Surgery is indicated when an identifiable cause of PCS that is known to respond well to operative intervention has been established. The most commonly performed procedure is endoscopic retrograde cholangiopancreatography (ERCP), which can be both diagnostic and therapeutic. Exploratory surgery is a last resort in the patient who lacks a diagnosis and whose condition proves refractory to medical therapy.

In 1947, Womack suggested resection of scar and nerve tissue around the cystic duct stump, though this method is somewhat controversial. [1] Others suggested resection of neuroma, cystic duct remnant, sphincter dilation, sphincterotomy, sphincteroplasty, biliary bypass, common bile duct (CBD) exploration, and stone removal. With ERCP, most of these diagnoses would have been ruled out or treated, and the idea of amputation of neuroma was controversial.

Patients abusing alcohol or narcotics are especially difficult to manage, and exploratory surgery should be postponed until they have stopped abusing these drugs.

In a few patients, no causes are identifiable and exploration is unrevealing, but the condition may respond to sphincteroplasty, including the bile and pancreatic ducts. This group of patients is not yet identifiable preoperatively.

If, after a complete evaluation (including ERCP with sphincterotomy), a patient continues to experience debilitating, intermittent right-upper-quadrant pain, and no diagnosis is found, the procedure of choice after a normal exploratory laparotomy is transduodenal sphincteroplasty.

When postcholecystectomy syndrome (PCS) results from remnant cystic duct lithiasis (RCDL; ie, gallstones within the cystic duct after cholecystectomy), endoscopic therapy may suffice, but surgical excision of the RCDL may be necessary in some cases. [19, 20]

Procedural details

After workup, the patient should be made safe for an operation, and the planned operation should be safe for the patient. The operation should be structured to follow a logical and systematic course with attention to detail and careful handling of tissues, especially those of the biliary tract.

The endoscopist should be experienced in evaluating this type of patient, and the surgeon should be experienced in operating on them. A skilled assistant should also be invited, and the radiologist and endoscopist involved in the case should be available for consultation. The patient should be the first and only individual undergoing surgery in the morning. A fresh team in the operating room is helpful in a potentially long and tedious case.

After exploration and lysis of adhesions, intraoperative cholangiography (IOC) should be performed. The only circumstance in which IOC may be omitted is when a nonbiliary source is identified and a high-quality preoperative cholangiogram is available (eg, from ERCP).

Most authorities agree that sphincteroplasty and septoplasty between the CBD and the pancreatic duct should be performed unless the head of the pancreas is hard, fibrotic, or indurated from chronic pancreatitis. In this situation, choledochoduodenostomy may prove more effective. Sphincteroplasty requires a generous right subcostal incision and mobilization of the hepatic flexure of the colon and the duodenum.

The portal structures are identified, along with the cystic duct stump. When possible, IOC should be performed through the stump. Choledochoscopy may also be helpful if a stone or potentially malignant stricture was identified. This can also be accomplished via the cystic duct stump. Once the stump is no longer needed, it is ligated with absorbable suture within 5 mm of the CBD junction. If the stump is not used, a T-tube should be placed through the choledochotomy when it is done.

A short duodenotomy is made, centered over the ampulla, and fine silk stay sutures are placed. A small biliary catheter should be placed in either an antegrade or a retrograde fashion.

With 12 o’clock representing cephalad and 9 o’clock posterior, a 3- to 5-mm incision is made at 11 o’clock through the ampulla over the catheter. Fine monofilament absorbable sutures are placed to approximate the duodenal and CBD mucosa. Placement should continue along the catheter for 2-3 cm, using fine Potts scissors. Lachrymal probes can be used to ensure that the pancreatic duct is not ligated.

Secretin (1-2 units intravenously) may be administered to help identify the location of the pancreatic duct. A septoplasty is then carried out in a similar fashion for approximately 1 cm. The result should be the easy passage of a 5-mm probe into the CBD and of a 2-mm probe into the pancreatic duct. Biopsy specimens may be taken as necessary.

The duodenum is closed in two layers. A T-tube is left whenever a choledochotomy is created. Postoperative care should be appropriate for the patient and the operation that was performed.

Previous
Next:

Prevention

Many articles have stated that a complete preoperative evaluation is essential to minimizing the incidence of PCS and that patients should be warned of the possibility of symptoms after cholecystectomy, which may start at any time from the immediate postoperative period to decades later.

Many studies have also been performed in an attempt to identify those at increased risk for PCS and to develop a method of risk stratification. To a large extent, the data are inconsistent from study to study; however, it is generally considered that the more secure the preoperative diagnosis, the lower the risk of PCS. Other reports find a cause for PCS in as many as 95% of patients.

Since the development of oral cholecystography (OCG) in the 1920s as a preoperative aid in the detection of stones or nonfunctioning gallbladders, a wide variety of noninvasive imaging techniques have proven useful in preoperative gallbladder assessment. Ultrasonography is the most accessible and cost-effective approach in most institutions. Other noninvasive techniques include the following:

  • Hepatobiliary scintigraphy with technetium-99m ( 99mTc)-labeled iminodiacetic acid (ie, hepatoiminodiacetic acid [HIDA] scanning), [21] with and without calculation of cholecystokinin (CCK)-stimulated ejection fraction (EF)
  • Computed tomography (CT), including helical or spiral CT
  • Magnetic resonance cholangiopancreatography (MRCP)

More invasive procedures that may prove valuable in defining the biliary anatomy include the following:

  • Percutaneous transhepatic cholangiography (PTC) and ERCP, with and without biliary and ampullary manometry and sphincterotomy
  • IOC

These procedures have helped reduce the incidence of PCS by facilitating better preoperative evaluation and diagnosis, especially in patients without stones.

As technology and understanding of the functional disorders of the GI and biliary tracts improve, the ability to make a diagnosis and to treat discovered illnesses will improve as well. PCS will be a less frequent diagnosis as patients are more efficiently screened and evaluated and as specific diagnoses are confirmed.

Previous
Next:

Long-Term Monitoring

Follow-up care should be appropriate for the patient and the operation that was performed.

In a retrospective study of 105 patients, Coté et al investigated whether follow-up ERCP and bile duct balloon sweeps are necessary to find abnormalities in patients who have undergone endoscopic treatment for postcholecystectomy bile duct leakage. [22] Patients underwent initial ERCP at the time of bile leak treatment and follow-up ERCP after a mean interval of 6.9 weeks.

At follow-up, one or more abnormalities were found in 27.6% of patients, including persistent bile leak, CBD stones, and CBD sludge without stones. [22] Balloon sweeps, administered to a subgroup of patients, revealed a 17.6% prevalence of CBD stones or sludge at follow-up. In view of the prevalence of abnormalities after the endoscopic treatment of bile leaks, the authors recommended that follow-up ERCP and balloon sweeps be performed in patients at the time of stent removal.

Previous