Blunt Abdominal Trauma Medication

Updated: Jan 02, 2019
  • Author: Eric L Legome, MD; Chief Editor: John Geibel, MD, MSc, DSc, AGAF  more...
  • Print
Medication

Medication Summary

Judiciously prescribe pain medications to patients who are discharged. To prevent masked or delayed presentations, ensure that a close follow-up for reevaluation is available to all patients who are provided pain medications. With the potential for hemorrhage, nonsteroidal anti-inflammatory drugs (NSAIDs) probably should be avoided. Acetaminophen with or without small quantities of mild narcotic analgesics may be all that should be prescribed initially. Minimize use of analgesics in patients who are admitted for observation.

Patients who undergo laparotomy may require routine perioperative antibiotics. Patients with repaired hollow organ injury may require additional antibiotics.

Next:

Analgesics

Class Summary

Pain control is essential to quality patient care. It ensures patient comfort, promotes pulmonary toilet, and prevents exacerbations in tachycardia and hypertension.

Morphine sulfate (Duramorph, Astramorph, MS Contin, Avinza, Kadian)

Morphine is the drug of choice for narcotic analgesia due to its reliable and predictable effects, safety profile, and ease of reversibility with naloxone. Like fentanyl, morphine sulfate is easily titrated to desired level of pain control.

Morphine sulfate administered intravenously may be dosed in a number of ways. It is commonly titrated until the desired effect is obtained.

Fentanyl citrate (Fentora, Abastral, Duragesic)

A synthetic opioid analgesic that is primarily a mu receptor agonist, fentanyl is 50-100 times more potent than morphine. It has a short duration of action (1-2 h) and minimal cardiovascular effects, such as hypotension. Respiratory depression is uncommon, but this effect lasts longer than its analgesic effect. Fentanyl is frequently used in patient-controlled analgesia for relief of pain. Unlike morphine, fentanyl is not commonly associated with histamine release.

Acetaminophen and hydrocodone (Vicodin, Lortab, Norco)

This drug combination is indicated for relief of moderate to severe pain.

Hydromorphone (Dilaudid)

Hydromorphone is a potent semisynthetic opiate agonist similar in structure to morphine. It is approximately 7-8 times as potent as morphine on mg-to-mg basis, with a shorter or similar duration of action.

Acetaminophen with codeine (Tylenol-3)

This combination is a mild narcotic analgesic. Provide the family with a small supply for use when pain severity is greater than can be managed with acetaminophen alone. Counsel parents to use for severe pain only, not as the first medication for each symptom.

Previous
Next:

Antibiotics

Class Summary

Empiric antimicrobial therapy must be comprehensive and should cover all likely pathogens in the context of the clinical setting.

Cefazolin

Cefazolin is a first-generation semisynthetic cephalosporin, which, by binding to 1 or more penicillin-binding proteins, arrests bacterial cell wall synthesis and inhibits bacterial replication. It has a poor capacity to cross the blood-brain barrier. Cefazolin is primarily active against skin flora, including S aureus. Regimens for intravenous and intramuscular dosing are similar. It is typically used alone for skin and skin-structure coverage.

Cephalexin (Keflex)

This is a first-generation cephalosporin that inhibits bacterial replication by inhibiting bacterial cell wall synthesis. It is bactericidal and is effective against rapidly growing organisms forming cell walls.

Resistance occurs by the alteration of penicillin-binding proteins. Cephalexin is effective for treatment of infections caused by streptococcal or staphylococcal organisms, including penicillinase-producing staphylococci. It may use to initiate therapy when streptococcal or staphylococcal infection is suspected.

It is used orally when outpatient management is indicated.

Cefotaxime (Claforan)

Cefotaxime is a third-generation cephalosporin with a broad gram-negative spectrum, lower efficacy against gram-positive organisms, and higher efficacy against resistant organisms. It acts by arresting bacterial cell wall synthesis by binding to one or more penicillin-binding proteins, which, in turn, inhibits bacterial growth. Cefotaxime is used for septicemia and treatment of gynecologic infections caused by susceptible organisms, but it has a lower efficacy against gram-positive organisms.

Ceftazidime (Fortaz, Tazicef)

Ceftazidime is a third-generation cephalosporin with broad-spectrum, gram-negative activity, including against Pseudomonas; it has low efficacy against gram-positive organisms and high efficacy against resistant organisms. This agent arrests bacterial growth by binding to one or more penicillin-binding proteins, which, in turn, inhibits the final transpeptidation step of peptidoglycan synthesis in bacterial cell wall synthesis, thus inhibiting cell wall biosynthesis.

The condition of the patient, severity of infection, and susceptibility of the microorganism should determine the proper dose and route of administration.

Ceftriaxone (Rocephin)

Ceftriaxone is a third-generation cephalosporin with broad-spectrum gram-negative activity, low efficacy against gram-positive organisms, and high efficacy against resistant organisms. It is considered the drug of choice for parenteral agents in community-acquired pneumonia. Bactericidal activity results from the inhibition of cell wall synthesis by binding to one or more penicillin-binding proteins. This agent exerts its antimicrobial effect by interfering with the synthesis of peptidoglycan, a major structural component of the bacterial cell wall. Bacteria eventually lyse due to ongoing activity of cell wall autolytic enzymes, while the cell wall assembly is arrested.

Ceftriaxone is highly stable in the presence of beta-lactamases, both penicillinase and cephalosporinase, and of gram-negative and gram-positive bacteria. Approximately 33-67% of the dose is excreted unchanged in urine, and the remainder is secreted in bile and, ultimately, in feces as microbiologically inactive compounds. This agent reversibly binds to human plasma proteins, and binding has been reported to decrease from 95% bound at plasma concentrations of less than 25 mcg/mL to 85% bound at 300 mcg/mL.

Erythromycin (E.E.S., Ery-Tab, Erythrocin, PCE, EryPed)

Erythromycin covers most potential etiologic agents, including Mycoplasma species. The oral regimen may be insufficient to adequately treat Legionella species, and this agent is less active against H influenzae. Although the standard course of treatment is 10 days, treatment until the patient has been afebrile for 3-5 days seems a more rational approach. Erythromycin therapy may result in GI upset, causing some clinicians to prescribe an alternative macrolide or change to a thrice-daily dosing.

Erythromycin is a macrolide that inhibits bacterial growth possibly by blocking dissociation of peptidyl t-RNA from ribosomes, causing RNA-dependent protein synthesis to arrest.

Amoxicillin and clavulanate (Augmentin, Augmentin XR, Amoclan)

Amoxicillin inhibits bacterial cell wall synthesis by binding to penicillin-binding proteins. The addition of clavulanate inhibits beta-lactamase producing bacteria.

It is a good alternative antibiotic for patients allergic to or intolerant of the macrolide class. It is usually is well tolerated and provides good coverage to most infectious agents. It is not effective against Mycoplasma and Legionella species. The half-life of the oral dosage form is 1-1.3 hours. It has good tissue penetration but does not enter cerebrospinal fluid.

For children older than 3 months, base the dosing protocol on the amoxicillin content. Due to different amoxicillin/clavulanic acid ratios in the 250-mg tablet (250/125) versus the 250-mg chewable tablet (250/62.5), do not use the 250-mg tablet until child weighs more than 40 kg.

Ampicillin and sulbactam (Unasyn)

This is a drug combination of a beta-lactamase inhibitor with ampicillin. It interferes with bacterial cell wall synthesis during active replication, causing bactericidal activity against susceptible organisms. It is an alternative to amoxicillin when the patient is unable to take medication orally.

It covers skin, enteric flora, and anaerobes. It is not ideal for nosocomial pathogens.

Piperacillin and tazobactam sodium (Zosyn)

This is an antipseudomonal penicillin plus a beta-lactamase inhibitor. It inhibits the biosynthesis of cell wall mucopeptide and is effective during the stage of active multiplication.

Ticarcillin and clavulanate (Timentin)

It inhibits the biosynthesis of cell wall mucopeptide and is effective during the stage of active growth.

It is an antipseudomonal penicillin plus a beta-lactamase inhibitor that provides coverage against most gram-positives, most gram negatives, and most anaerobes.

Ciprofloxacin (Cipro)

Ciprofloxacin is a fluoroquinolone that inhibits bacterial DNA synthesis and, consequently, growth, by inhibiting DNA gyrase and topoisomerases, which are required for replication, transcription, and translation of genetic material. Quinolones have broad activity against gram-positive and gram-negative aerobic organisms. It is has no activity against anaerobes. Continue treatment for at least 2 days (7-14 d typical) after signs and symptoms have disappeared.

Levofloxacin (Levaquin)

Levofloxacin is rapidly becoming a popular choice in pneumonia; this agent is a fluoroquinolone used to treat community-acquired pneumonia caused by S aureus, S pneumoniae (including penicillin-resistant strains), H influenzae, H parainfluenzae, Klebsiella pneumoniae, M catarrhalis, C pneumoniae, Legionella pneumophila, or M pneumoniae. Fluoroquinolones should be used empirically in patients likely to develop exacerbation due to resistant organisms to other antibiotics.

Levofloxacin is the L stereoisomer of the D/L parent compound ofloxacin, the D form being inactive. It is good monotherapy with extended coverage against Pseudomonas species and excellent activity against pneumococci. Levofloxacin acts by inhibition of DNA gyrase activity. The oral form has a bioavailability that is reportedly 99%.

The 750-mg dose is as well tolerated as the 500-mg dose, and it is more effective. Other fluoroquinolones with activity against S pneumoniae may be useful and include moxifloxacin, gatifloxacin, and gemifloxacin.

Clindamycin (Cleocin, Cleocin Pediatric)

Clindamycin is a lincosamide semisynthetic antibiotic produced by 7(S)-chloro-substitution of 7(R)-hydroxyl group of the parent compound lincomycin. It inhibits bacterial growth, possibly by blocking dissociation of peptidyl tRNA from ribosomes, causing RNA-dependent protein synthesis to arrest. It widely distributes in the body, without penetration of the CNS. It is protein bound and is excreted by the liver and kidneys.

It is available in a parenteral form (ie, clindamycin phosphate) and oral form (ie, clindamycin hydrochloride). Oral clindamycin is absorbed rapidly and almost completely and is not appreciably altered by the presence of food in the stomach. Appropriate serum levels are reached and sustained for at least 6 hours following an oral dose. No significant levels are attained in cerebrospinal fluid. It is also effective against aerobic and anaerobic streptococci (except enterococci).

Previous