von Willebrand Disease

Updated: Mar 31, 2023
  • Author: Eleanor S Pollak, MD; Chief Editor: Srikanth Nagalla, MD, MS, FACP  more...
  • Print

Practice Essentials

Von Willebrand disease (vWD) is a common, inherited, genetically and clinically heterogeneous hemorrhagic disorder caused by a deficiency or dysfunction of the protein termed von Willebrand factor (vWF). In vWD, defective vWF interaction between platelets and the vessel wall impairs primary hemostasis. [1] (See Etiology and Workup.)

vWF, a large, multimeric glycoprotein, circulates in blood plasma at concentrations of approximately 10 mg/mL. In response to numerous stimuli, vWF is released from storage granules in platelets and endothelial cells. It performs two major roles in hemostasis. First, it mediates the adhesion of platelets to sites of vascular injury. Second, it binds and stabilizes the procoagulant protein factor VIII (FVIII). (See Etiology.)

vWD is divided into three major categories, as follows:

  • Type 1 – Partial quantitative vWF deficiency
  • Type 2 – Qualitative vWF deficiency
  • Type 3 - Total vWF deficiency

vWD type 2 is further divided into four variants (2A, 2B, 2N, 2M), based on characteristics of dysfunctional vWF. These categories correspond to distinct molecular mechanisms, with corresponding clinical features and therapeutic recommendations. (See Etiology, Workup, and Treatment.) In a review of 670 French families with von Willebrand Disease, the distribution of VWD types was as follows [2] :

  • Type 1 – 25%
  • Type 2 – 66%
  • Type 3 – 8%
  • Unknown type – 1%

The most common signs of vWD include nosebleeds and hematomas. Prolonged bleeding from trivial wounds, oral cavity bleeding, and excessive menstrual bleeding are common. See Presentation.

The main treatment options for patients with vWD are desmopressin (DDAVP), recombinant vWF, and vWF/factor VIII (vWF/FVIII) concentrates. In addition, antifibrinolytic drugs (ie, aminocaproic acid, tranexamic acid) can be used orally or intravenously to treat mild mucocutaneous bleeding. Prophylaxis may be indicated in patients with severe vWD. See Treatment and Medication.

For discussion of vWD in children, see Pediatric Von Willebrand Disease.

Patient education

Patients should be instructed about their coagulation disorder and be aware of the conditions in which prophylactic therapy is highly recommended. Patient education information is available online through the following organizations:



In the great majority of cases, vWD is an inherited condition. The vWF gene is located near the tip of the short arm of chromosome 12. The gene is composed of 52 exons and spans a total of 180kb of the human genome; therefore, it is similar in size to the FVIII gene. Expression of the vWF gene is restricted to megakaryocytes, endothelial cells, and, possibly, placental syncytiotrophoblasts. A partial, nonfunctional duplication (pseudogene) is present on chromosome 22.

vWF exists as a series of multimers varying in molecular weight between 0.5-kd (dimer) and 20 million kd (multimer). The building blocks of multimers are dimers, which are held together by disulfide bonds located near the C-terminal end of each subunit. [3]

vWD type I

vWD type I causes a mild to moderate quantitative deficiency of vWF (ie, about 20-50% of normal levels). In individuals with vWF levels < 0.3 IU/mL, type I is usually inherited in autosomal dominant fashion; in those with levels > 0.3 IU/mL, mutations show variable penetrance. [4]

vWD type II

vWD type II is due to qualitative vWF abnormalities and is subdivided into types IIA, IIB, IIN, and IIM. vWD type IIA, the most common qualitative abnormality of vWF, is associated with selective loss of large and medium-sized multimers. Most cases have autosomal dominant inheritance. [4]

vWD type IIB characterized by the loss of large multimers occurs through a mechanism distinct from that of type IIA. Observations to date have identified a critical region of vWF involved in the binding of vWF to the platelet receptor glycoprotein Ib (GpIb). Each of the identified single amino acid substitutions is thought to result in a gain of function, leading to spontaneous binding of vWF to platelets.

Normally, plasma vWF is inert in its interaction towards platelets until it encounters an exposed subendothelial surface. vWF binding to collagen and/or other ligands within the injured vessel wall presumably results in a secondary conformational change, which then facilitates binding to the GpIb receptor.

In vWD type IIB, the mutant vWF spontaneously binds to GpIb in the absence of subendothelial contact. The large multimers have the highest affinity for GpIb and are rapidly cleared from the plasma along with the bound platelets, resulting in thrombocytopenia and the characteristic loss of large multimers.

vWD type IIN, sometimes referred to as vWD Normandy (after the province of origin of one of the first families identified with the disease), is characterized by a defect residing within the patient's plasma vWF that interferes with its ability to bind FVIII. This has important implications in the differential diagnosis of hemophilia. Most patients are compound heterozygotes with a vWF null allele. [4]

vWD type IIM (for multimer) involves qualitative variants with decreased platelet-dependent function not resulting from absence of high–molecular weight multimers. Type IIM vWD can result from a variety of mutations and is heterogeneous. In a study of 14 patients with vWD type IIM, the consistent findings were significant prolongation in PFA-100 and greatly reduced or absentristocetin-induced platelet aggregation and vWF ristocetin cofactor. [5]

vWD type III

Patients with vWD type III, a severe, quantitative deficiency associated with very little or no detectable plasma or platelet vWF, have a profound bleeding disorder. vWD type III appears to result from the inheritance of a mutant vWF gene from both parents. In the most straightforward model, vWD type I would simply represent the heterozygous form of vWD type III; however, inheritance patterns indicate greater complexity.

vWD type III is much rarer than the predicted frequency of 1 case per 40,000 persons based on this model, instead having a frequency closer to 1 case per 1 million persons. Although few mutations have been identified in families with pure vWD type I, some vWD type I cases have been suggested to be due to a mutant vWF subunit that interferes in a dominant, negative way with the normal allele, accounting for the autosomal dominant inheritance.

The discovery of a deletion of vWF (c.221-977_532 + 7059del [p.Asp75_Gly178del]) in 7 of 12 white patients with vWD type III from 6 unrelated families, and its absence in 9 Asian patients, led Sutherland et al to develop a genomic deoxyribonucleic acid (DNA) ̶ based assay for the deletion of vWF exons 4 and 5. [6] This deletion was also found in 12 of 34 vWD type I families and was associated with a specific vWF haplotype, which the investigators noted may indicate a possible founder origin. Additional studies demonstrated the presence of the mutation in other patients with type I vWD and in a family that expressed both type I and type III vWD. [6]

Sutherland et al reported the c.221-977_532 + 7059del mutation as a novel cause of type I and type III vWD and suggested that screening for this mutation in other type I and type III vWD patient populations may clarify its contribution to vWD that arises from quantitative vWF deficiencies. [6]

Acquired vWD

Acquired vWD is a rare disorder that results from the development of antibodies to vWF, or from excessive cleavage of vWF multimers due to conditions that generate high shear stress in the bloodstream. Acquired vWD may arise in a variety of settings—including lymphoproliferative, cardiovascular, and myeloproliferative diseases [7] —and typically resolves with treatment of the cause. [4]

Case reports of acquired vWD have involved the following [8] :

  • Hematologic malignancies – Plasma cell disorder, monoclonal gammopathy of unknown significance (MGUS), chronic lymphocytic leukemia, severe essential thrombocythemia
  • Cardiovascular disorders – Aortic stenosis; congenital heart disease, especially complex defects and Eisenmenger syndrome [9]
  • Devices – Left ventricular assist devices, extracorporeal membrane oxygenation (ECMO) [10, 11]
  • Drugs – Valproic acid, cephalosporin
  • Infections – COVID-19, [11, 12] other viral infections
  • Hyperfibrinolysis (plasmin mediated)
  • Glycogen storage disease
  • Uremia
  • Hypothyroidism – These cases are typically mild to moderate and improve with restoration of euthyroidism. [13]  
  • Idiopathic pulmonary arterial hypertension, due to the narrowed pulmonary vasculature in these cases. [14]  
  • Active systemic lupus erythematosus. [15]


Clinically significant vWD affects approximately 125 persons per million population, with severe disease affecting approximately 0.5-5 persons per million population. Reports from screenings of unselected individuals indicated a higher prevalence of vWD abnormalities, ie, close to 1% of the population.

Sex- and age-related demographics

Males and females are affected equally by vWD. However, the phenotype may be more pronounced in females, because of menorrhagia and the greater visibility of bruises. [16]

In the great majority of cases, vWD is an inherited condition. Bleeding-related symptoms may occur at a young age, even just after or during birth. Some reports have suggested a decreased bleeding tendency as patients age.



For most affected individuals, vWD is a mild, manageable bleeding disorder in which clinically severe hemorrhage manifests only in the face of trauma or invasive procedures. However, significant variability of symptomatology exists among family members.

In individuals with vWD types II and III, bleeding episodes may be severe and potentially life threatening. Individuals with type III disease who have correspondingly low FVIII levels may develop arthropathies, as more commonly seen in hemophilia A patients with comparably decreased FVIII levels.

Levels of vWF normally increase with age. However, Sanders and colleagues found that although vWF levels increased with aging in patients with type I vWD, elderly patients with type I reported no change in their pattern of bleeding did not change. In patients with type II vWD, vWF levels did not increase with aging, and eldelry patients reported significantly more bleeding symptoms. [17]