Medication Summary
The 4 major drug classes used to treat malaria include quinoline-related compounds, antifolates, artemisinin derivatives, and antimicrobials. No single drug that can eradicate all forms of the parasite's life cycle has been discovered or manufactured yet; therefore, 1 or more classes of drugs often are given at the same time to combat malarial infection synergistically. Treatment regimens are dependent on the geographic location of infection, the likely Plasmodium species, and the severity of disease presentation.
Beware of counterfeit antimalarial drugs being taken by patients that may have been purchased overseas or via the internet. They may not contain any active ingredients at all and may contain dangerous materials.
Antipyretics, such as acetaminophen or nonsteroidal anti-inflammatory drugs (NSAIDs), are indicated to reduce the level of discomfort caused by the infection and to reduce fever. NSAIDs should be used with caution if bleeding disorder or hemolysis is suspected.
Antimalarials can cause significant prolongation of the QT interval, which can be associated with an increased risk for potentially lethal ventricular dysrhythmias. Patients receiving these drugs should be assessed for QT prolongation at baseline and carefully monitored if this is present. Patients with normal QT intervals on electrocardiogram (ECG) may not be at a significantly increased risk for drug-induced dysrhythmia, but caution is advised, particularly if the patient is taking multiple drug regimens or if they are on other drugs affecting the QT interval.
Methemoglobinemia is a complication that may be associated with high-dose regimens of quinine or the derivatives chloroquine and primaquine. [54] A patient presenting with cyanosis and a normal PaO2 on room air should be suspected of having methemoglobinemia.
Antimalarials
Class Summary
These agents inhibit growth by concentrating within acid vesicles of the parasite, increasing the internal pH of the organism. They also inhibit hemoglobin utilization and parasite metabolism.
Chloroquine phosphate (Aralen)
Chloroquine phosphate is effective against P vivax, P ovale, P malariae, and drug-sensitive P falciparum. It can be used for prophylaxis or treatment. This is the prophylactic drug of choice for sensitive malaria.
Quinine (Qualaquin)
Quinine is used for malaria treatment only; it has no role in prophylaxis. It is used with a second agent in drug-resistant P falciparum. For drug-resistant parasites, the second agent is doxycycline, tetracycline, pyrimethamine sulfadoxine, or clindamycin.
Quinidine gluconate
Quinidine gluconate is indicated for severe or complicated malaria and is used in conjunction with doxycycline, tetracycline, or clindamycin. Quinidine gluconate can be administered IV and is the only parenterally available quinine derivative in the United States.
Doxycycline (Vibramycin, Adoxa, Doryx)
Doxycycline is used for malaria prophylaxis or treatment. When it is administered for treatment of P falciparum malaria, this drug must be used as part of combination therapy (eg, typically with quinine or quinidine).
Tetracycline
Tetracycline may specifically impair the progeny of apicoplast genes, resulting in their abnormal cell division. Loss of apicoplast function in progeny of treated parasites leads to slow, but potent, antimalarial effect.
Clindamycin (Cleocin HCl, Cleocin Phosphate)
Clindamycin is part of combination therapy for drug-resistant malaria (eg, typically with quinine or quinidine). It is a good second agent in pregnant patients.
Mefloquine
Mefloquine acts as a blood schizonticide. It may act by raising intravesicular pH within the parasite's acid vesicles. Mefloquine is structurally similar to quinine. It is used for the prophylaxis or treatment of drug-resistant malaria. It may cause adverse neuropsychiatric reactions and should not be prescribed for prophylaxis in patients with active or recent history of depression, generalized anxiety disorder, psychosis, or schizophrenia or other major psychiatric disorders.
Atovaquone and proguanil (Malarone)
Atovaquone may inhibit metabolic enzymes, which in turn inhibits the growth of microorganisms.
Used for pediatric patients, this combination should be administered for uncomplicated P falciparum; can also be used in combination with chloroquine.
This agent is approved in the United States for the prophylaxis and treatment of mild chloroquine-resistant malaria. It may be a good prophylactic option for patients who are visiting areas with chloroquine-resistant malaria and who cannot tolerate mefloquine. Each tab combines 250 mg of atovaquone and 100 mg of proguanil hydrochloride. The dosage for children is based on body weight; in children 40 kg (88 lb) or less, a lower-dose pediatric tablet (62.5 mg of atovaquone and 25 mg of proguanil hydrochloride) is available.
Primaquine
Primaquine is not used to treat the erythrocytic stage of malaria. Administer the drug for the hypnozoite stage of P vivax and P ovale to prevent relapse.
Artemether and lumefantrine (Coartem)
This drug combination is indicated for the treatment of acute, uncomplicated P falciparum malaria. It contains a fixed ratio of 20 mg artemether and 120 mg lumefantrine (1:6 parts). Both components inhibit nucleic acid and protein synthesis. Artemether is rapidly metabolized into the active metabolite dihydroartemisinin (DHA), producing an endoperoxide moiety. Lumefantrine may form a complex with hemin, which inhibits the formation of beta hematin.
Artesunate
Artesunate, a form of artemisinin, is rapidly metabolized to active metabolite, dihydroartemisinin (DHA). Artesunate and DHA, like other artemisinins, contain an endoperoxide bridge that is activated by heme iron, leading to oxidative stress, inhibition of protein and nucleic acid synthesis, ultrastructural changes, and decreased parasite growth and survival. It is indicated for initial treatment of severe malaria in adults and children. Once the patient can tolerate oral therapy, a complete treatment course of an appropriate oral antimalarial regimen should always follow artesunate.
Tafenoquine (Arakoda, Krintafel)
Tafenoquine is an 8-aminoquinoline derivative. The 150-mg tablet (Krintafel) is indicated for the radical cure (prevention of relapse) of P vivax malaria in patients aged 16 years or older who are receiving appropriate antimalarial therapy for acute P vivax infection. Krintafel is administered as a single 300-mg dose coadministered on the first or second day of appropriate antimalarial therapy. The drug is active against all stages of the P vivax life cycle, including hypnozoites.
Tafenoquine is also indicated for adults aged 18 years or older as prophylaxis when traveling to malarious areas. For this indication, the 100-mg tablet (Arakoda) is administered as a loading dose (before traveling to endemic area), a maintenance dose while in malarious area, and then a terminal prophylaxis dose in the week exiting the area.
-
Malarial merozoites in the peripheral blood. Note that several of the merozoites have penetrated the erythrocyte membrane and entered the cell.
-
This micrograph illustrates the trophozoite form, or immature-ring form, of the malarial parasite within peripheral erythrocytes. Red blood cells infected with trophozoites do not produce sequestrins and, therefore, are able to pass through the spleen.
-
An erythrocyte filled with merozoites, which soon will rupture the cell and attempt to infect other red blood cells. Notice the darkened central portion of the cell; this is hemozoin, or malaria pigment, which is a paracrystalline precipitate formed when heme polymerase reacts with the potentially toxic heme stored within the erythrocyte. When treated with chloroquine, the enzyme heme polymerase is inhibited, leading to the heme-induced demise of non–chloroquine-resistant merozoites.
-
A mature schizont within an erythrocyte. These red blood cells (RBCs) are sequestered in the spleen when malaria proteins, called sequestrins, on the RBC surface bind to endothelial cells within that organ. Sequestrins are only on the surfaces of erythrocytes that contain the schizont form of the parasite.
-
Malaria life cycle. Courtesy of the Centers for Disease Control and Prevention (CDC) [https://www.cdc.gov/dpdx/malaria/index.html].
-
Proportion of 2021 Global Malaria Burden. Gray area accounts for the remaining estimated 4.4% of worldwide malaria burden. Map created using data adapted from WHO 2022 World Malaria Report [https://www.who.int/teams/global-malaria-programme/reports/world-malaria-report-2022].
-
Confirmed P falciparum or P vivax Cases Per Country 2021. The map accounts for the total of the cases per country where either species were confirmed as the primary infection. The map does not include confirmed “mixed infections.” Gray indicates that there were either no data available or there were zero endemic cases. Map created using data adapted from WHO 2022 World Malaria Report [https://www.who.int/teams/global-malaria-programme/reports/world-malaria-report-2022].
-
North American Presumed and Confirmed Malaria Cases 2021. Gray indicates that there were either no data available or there were zero endemic cases. Map created using data adapted from WHO 2022 World Malaria Report [https://www.who.int/teams/global-malaria-programme/reports/world-malaria-report-2022].
-
South American Presumed and Confirmed Malaria Cases 2021. Gray indicates that there were either no data available or there were zero endemic cases. Map created using data adapted from WHO 2022 World Malaria Report [https://www.who.int/teams/global-malaria-programme/reports/world-malaria-report-2022].
-
African Presumed and Confirmed Malaria Cases 2021. Gray indicates that there were either no data available or there were zero endemic cases. Map created using data adapted from WHO 2022 World Malaria Report [https://www.who.int/teams/global-malaria-programme/reports/world-malaria-report-2022].
-
Asian and Oceanic Presumed and Confirmed Malaria Cases 2021. Gray indicates that there were either no data available or there were zero endemic cases. Map created using data adapted from WHO 2022 World Malaria Report [https://www.who.int/teams/global-malaria-programme/reports/world-malaria-report-2022].
-
South Pacific Presumed and Confirmed Malaria Cases 2021. Gray indicates that there were either no data available or there were zero endemic cases. Map created using data adapted from WHO 2022 World Malaria Report [https://www.who.int/teams/global-malaria-programme/reports/world-malaria-report-2022].
-
Global P falciparum to P vivax Case Ratios 2021. Gray indicates that there were either no data available or there were zero endemic cases. Red indicates higher proportion of P vivax cases, whereas blue indicates higher proportion of P falciparum cases. Map created using data adapted from WHO 2022 World Malaria Report [https://www.who.int/teams/global-malaria-programme/reports/world-malaria-report-2022].
-
Thin blood smear showing the ring forms of P falciparum that look like headphones with double chromatin dots. Note how P falciparum is seen infecting erythrocytes of all ages – a trait that can be utilized by the microscopist by noting the similar size of infected erythrocytes to other surrounding uninfected erythrocytes. Courtesy of the Centers for Disease Control and Prevention (CDC) [https://www.cdc.gov/dpdx/malaria/index.html].
-
Thick blood smear depicting the banana shaped gametocyte of P falciparum. Multiple ring-form trophozoite precursors are also visible in the background. Courtesy of the Centers for Disease Control and Prevention (CDC) [https://www.cdc.gov/dpdx/malaria/index.html].
-
Thin blood smear of the ring forms of P vivax. Note that P vivax typically has a single chromatin dot vs the two chromatin dots in P falciparum. Courtesy of the Centers for Disease Control and Prevention (CDC) [https://www.cdc.gov/dpdx/malaria/index.html].
-
The diagnostic form of P vivax is the amoeboid trophozoite form where the cytoplasm has finger-like projections (pseudopods) without a typical round/oval structure. These pseudopods are unique to P vivax. Numerous small pink-red dots are also seen in both P vivax and P ovale; these are known as caveola-vesicle complexes (CVCs or Schüffner’s dots) and are composed of numerous flask-like indentations on infected reticulocytes membrane skeleton associated with tube-like vesicles. CVCs are thought to play a role in nutrient uptake or release of metabolites from parasite-infected erythrocytes. Courtesy of the Centers for Disease Control and Prevention (CDC) [https://www.cdc.gov/dpdx/malaria/index.html].
-
Thin smear of P ovale in ring stage. Note that typically there is a single chromatin dot, larger cells are infected indicative of reticulocytes, and multiple ring forms may be present intracellularly. Courtesy of the Centers for Disease Control and Prevention (CDC) [https://www.cdc.gov/dpdx/malaria/index.html].
-
Thin smear of P ovale trophozoite. Note that this species is difficult to differentiate from P vivax as it contains CVCs (Schüffner’s dots) and infects reticulocytes; a notable unique characteristic of P ovale is the presence of fimbriae on the reticulocyte membrane, which are even more likely to be seen in gametocyte infected red blood cells. Courtesy of the Centers for Disease Control and Prevention (CDC) [https://www.cdc.gov/dpdx/malaria/index.html].
-
Thin blood smear of “band form” trophozoite of P malariae. Note that the infected erythrocyte is smaller than surrounding cells, indicating that P malariae infects older erythrocytes. As the trophozoite matures, the cytoplasm elongates and dark pigment granules of hemozoin are visualized toward the periphery. Courtesy of the Centers for Disease Control and Prevention (CDC) [https://www.cdc.gov/dpdx/malaria/index.html].
-
Thin blood smear of P knowlesi trophozoites. An immature ring form is seen on the right next to the mature band form trophozoite on the left. Note the small size of the infected red blood cells and how the band form is similar in appearance to P malariae. Courtesy of the Centers for Disease Control and Prevention (CDC) [https://www.cdc.gov/dpdx/malaria/index.html].