Updated: Oct 10, 2019
  • Author: Jason F Okulicz, MD, FACP, FIDSA; Chief Editor: Michael Stuart Bronze, MD  more...
  • Print


Typhus refers to a group of infectious diseases that are caused by rickettsial organisms and that result in an acute febrile illness. Arthropod vectors transmit the etiologic agents to humans. The principle diseases of this group are epidemic or louse-borne typhus and its recrudescent form known as Brill-Zinsser disease, murine typhus, and scrub typhus. (For more information on pediatric scrub typhus, see the Medscape Reference article Pediatric Scrub Typhus in the Pediatric: General Medicine volume.)



Epidemic typhus is the prototypical infection of the typhus group of diseases, and the pathophysiology of this illness is representative of the entire category. The arthropod vector of epidemic typhus is the body louse (Pediculus corporis). This is the only vector of the typhus group in which humans are the usual host. Rickettsia prowazekii, which is the etiologic agent of typhus, lives in the alimentary tract of the louse. A Rickettsia- harboring louse bites a human to engage in a blood meal and causes a pruritic reaction on the host's skin. The louse defecates as it eats; when the host scratches the site, the lice are crushed, and the Rickettsia- laden excrement is inoculated into the bite wound. The Rickettsia travel to the bloodstream and rickettsemia develops.

R prowazekii is also thought to be transmitted by fleas associated with flying squirrels and their nesting material, by inhaling dried louse feces, or by rubbing Rickettsia -containing louse feces inadvertently into eyes, mucous membranes, or in insect bite–associated wounds. [1]

Rickettsia parasitize the endothelial cells of the small venous, arterial, and capillary vessels. The organisms proliferate and cause endothelial cellular enlargement with resultant multiorgan vasculitis. This process may cause thrombosis, and the deposition of leukocytes, macrophages, and platelets may result in small nodules. Thrombosis of supplying blood vessels may cause gangrene of the distal portions of the extremities, nose, ear lobes, and genitalia. This vasculitic process may also result in loss of intravascular colloid with subsequent hypovolemia and decreased tissue perfusion and, possibly, organ failure. Loss of electrolytes is common.

Some people with a history of typhus may develop a recrudescent type of typhus known as Brill-Zinsser disease. After a patient with typhus is treated with antibiotics and the disease appears to be cured, Rickettsia may linger in the body tissues. Months, years, or even decades after treatment, organisms may reemerge and cause a recurrence of typhus. How the Rickettsia organisms linger silently in a person and by what mechanism recrudescence is mediated are unknown. The presentation of Brill-Zinsser disease is less severe than epidemic typhus, and the associated mortality rate is much lower. Risk factors that may predispose to recrudescent typhus include improper or incomplete antibiotic therapy and malnutrition.

Murine typhus and scrub typhus share the same pathophysiology as epidemic typhus, although they are somewhat milder. The incubation period is approximately 12 days for the typhus group. Prior infection with Rickettsia typhi provides subsequent and long-lasting immunity to reinfection.




United States

Sporadic cases of active infection with R prowazekii, the etiologic agent of epidemic typhus, have been reported. These occurred in the central and eastern portions of the United States and have been linked with exposure to flying squirrels (Glaucomys volans). [2] The flying squirrel acts as the host for R prowazekii, and transmission to humans is believed to occur via squirrel fleas or lice. Murine typhus caused by infection with Rickettsia felis is associated with opossums, [3] cats, and their fleas and occurs in southern California and southern Texas. Most cases of murine typhus in Texas occur in spring and summer, whereas, in California, the illness is most common in the summer and fall.

In 2013, 12 patients with murine typhus were identified in Galveston, Texas, which may reflect a re-emergence of R typhi in the rat population and/or a cycle involving opossums and cats with R felis. [4] Murine typhus is most common in adults, but infection may occur in any age group. [5] No indigenous cases of scrub typhus have occurred in the United States, although infections have been diagnosed in patients returning from endemic areas.


Epidemic typhus occurs in Central and South America, Africa, northern China, and certain regions of the Himalayas. Outbreaks may occur when conditions arise that favor the propagation and transmission of lice. Brill-Zinsser disease develops in approximately 15% of people with a history of primary epidemic typhus.

Murine typhus occurs in most parts of the world, particularly in subtropical and temperate coastal regions. Murine typhus occurs mainly in sporadic cases, and incidence is probably greatly underestimated in the more endemic regions. Rats, mice, and cats, which are hosts for the disease, are particularly common along coastal port regions. Populations of the flea vector may rise during the summer months in temperate climates, subsequently increasing the incidence of murine typhus. The homeless are particularly vulnerable. [6] Prior infection with R typhi provides immunity to subsequent reinfection.

Scrub typhus occurs in the western Pacific region, northern Australia, and the Indian subcontinent. The incidence of scrub typhus is largely unknown. Many cases are undiagnosed because of its nonspecific manifestations and the lack of laboratory diagnostic testing in endemic areas. However, one study found that the incidence of scrub typhus in Malaysia was approximately 3% per month, and multiple infections in the same individual are possible because of a lack of cross-immunity among the various strains of its causative organism, Orientia tsutsugamushi. [7]


Epidemic typhus causes the most severe clinical presentation among the typhus group of rickettsial infections. Patients with severe epidemic typhus may develop gangrene, leading to a loss of digits, limbs, or other appendages. The vasculitic of epidemic typhus process may also lead to CNS dysfunction, ranging from dullness of mentation to coma, multiorgan system failure, and death. Untreated epidemic typhus carries a mortality rate of as low as 20% in otherwise healthy individuals and as high as 60% in elderly or debilitated persons. Since the advent of widely available antibiotic treatment, the mortality rates associated with epidemic typhus have fallen to approximately 3-4%.

The mortality rate among treated patients with murine typhus is 1-4% and less than 1% for scrub typhus.

GeoSentinel, a global network that monitors travel-related morbidity, reported no fatalities in 16 cases of murine typhus and 13 cases of scrub typhus that occurred in international travellers from 1996-2011. [8]


The typhus group of infections has no sexual predilection.


The typhus group of infections has no age predilection. However, in the United States, murine typhus and sporadic cases of epidemic typhus have mainly occurred in adults.



Uncomplicated cases of typhus that are diagnosed promptly and antibiotic therapy initiated early generally carry an excellent prognosis. Mortality rates are greatly reduced when appropriate antibiotics are initiated promptly (see Mortality/Morbidity).

Complicated cases of typhus generally carry a good prognosis, but this varies depending on the severity of the specific complications and the health status of the patient at the time of disease onset.


Patient Education

Education concerning typhus should be focused on the preventive measures (see Deterrence/Prevention).