Urinary Tract Infection (UTI) in Males Treatment & Management

Updated: Mar 27, 2023
  • Author: John L Brusch, MD, FACP; Chief Editor: Michael Stuart Bronze, MD  more...
  • Print

Approach Considerations

Male UTIs should be recognized as complications of ongoing upper tract infection. The initial treatment regimen is based on the local sensitivity patterns of the organisms that are to be focused upon. The primary value of the initial culture is to allow adjustment of the treatment plan if antibiotic sensitivity testing demonstrates a resistant organism.

In the elderly, pyelonephritis carries a 3% mortality rate. This dictates that the initial empiric therapy will be based on the likelihood of resistant organisms in the community.

The decision to treat young men who are sexually active for UTI versus sexually transmitted disease (STD) – related urethritis rests primarily on epidemiologic grounds (eg, recent new sexual partner, multiple sexual partners).



Consultation with a urologist is essential for the treatment of UTIs in adult males with the following:

  • Suspected underlying anatomic abnormality - however, this consultation can be completed on an outpatient basis, unless obstructive uropathy is present
  • Acute scrotal infection - consultation is needed in all but the most clear-cut cases.
  • All forms of prostatitis - in acute bacterial prostatitis, suprapubic drainage may be required if acute urinary retention occurs

The following are suggested consultations:

  • Infectious disease specialist - when unusual or resistant microorganisms have already been isolated; and / or one or more of the community's uropathogens demonstrate high rates of resistance (>15%)
  • Infections of the immunosuppressed
  • Pharmacokinetics specialist especially when using aminoglycosides or other drugs that pose a significant risk to the given patient.

Pain specialists may be needed to control discomfort in patients with nonbacterial prostatitis. Chronic abacterial prostatitis shares the following with other chronic pain syndromes: (1) pain as a primary complaint; (2) discord between symptoms and findings; and (3) history of multiple unsuccessful treatments. Providers of alternative healing (eg, hypnotherapists) and a psychiatrist or psychologist also may be needed.


Outpatient Versus Inpatient UTI Management

Patients who are free of significant underlying conditions such as significant renal dysfunction, and whose vital signs demonstrate the ability to comply with oral therapy, are candidates for outpatient therapy. In a responsible adult, check in with them to see how everything is going. Formal medical follow-up should be arranged for 48-72 hours.

If the patient appears toxic, has obstructive uropathy, has stones, is unable to tolerate fluids by mouth, has significant comorbid disease, or otherwise is unable to care for himself at home, inpatient admission is recommended. For example, consider admission for UTI for elderly patients and patients who have diabetes, who are immunocompromised, or who show signs of dehydration, hyperpyrexia, or rigors.

Initial inpatient treatment includes intravenous (IV) antimicrobial therapy with a third-generation cephalosporin, such as ceftriaxone; a fluoroquinolone, such as ciprofloxacin; or an aminoglycoside. Antipyretics, analgesics, and adequate IV fluids to restore appropriate circulatory volume and promote adequate urinary flow are also important.


In patients with risk factors associated with an unfavorable prognosis, such as old age, debility, renal calculi, recent hospitalization or instrumentation, diabetes, sickle cell anemia, underlying carcinoma, or intercurrent cancer chemotherapy, the antimicrobial coverage should be broadened and an antipseudomonal agent should be added.

Adult males with UTI should receive a 10- to 14-day course of antibiotics. Outpatient regimens include a fluoroquinolone, trimethoprim-sulfamethoxazole (TMP-SMZ), minocycline, or nitrofurantoin (should not be given if glomerular filtration rate < 50). Treat the symptom of dysuria with phenazopyridine. [13, 14, 15, 16]

Unfortunately, the prevalence of uropathogens resistant to TMP-SMZ, nitrofurantoin, and first-generation cephalosporins has continued to rise. There are data that suggest overall resistance to TMP-SMZ is approximately 25% (range, 10-45%), based on the area of the country, and resistance to nitrofurantoin is slightly higher. Fluoroquinolone resistance is an increasing problem. Despite these concerns, fluoroquinolones remain the preferred initial drug therapy for many providers. [17]

Aminoglycoside-related complications

As previously stated, prolonged use of aminoglycosides (>2wk) is a complication risk factor, including for cranial nerve (CN) VIII damage (hearing loss and vestibular dysfunction). Fortunately, most aminoglycoside use in treating serious UTIs is limited to less than 1 week.

Unfortunately, monitoring for CN VIII dysfunction is less than optimal; by the time it is detectable (even subclinically, by weekly audiograms and/or electronystagmograms), the damage has been done and is irreversible. This is because of differences in half-lives between sera and because of the endolymph and perilymph that bathe the inner ear. However, monitoring allows the damage to be minimized. Remember that the auditory and vestibular systems function independently; therefore, consideration should be given to monitoring each.

Animal models suggest that doses of aminoglycosides given at night or to a patient who has been fasting or is dehydrated may be more ototoxic. The possibly protective roles of calcium and calcium channel blockers await further study.

Dietary considerations

Keeping the patient well hydrated is important, especially if an obstruction was recently relieved.

Drinking cranberry juice offers little benefit. Although it appears to inhibit E coli from adhering to human uroepithelium, the amounts of bacteriostatic hippuric acid that are present are unlikely to be clinically effective.

For complicated UTIs associated with struvite calculi, foods and vitamin supplements rich in phosphorus and magnesium are advised. Remember that divalent cations (eg, magnesium) can chelate oral fluoroquinolones, preventing their absorption from the gut.

Activity considerations

Bedrest and avoiding certain activities (eg, bike riding) may be beneficial in patients with prostatitis. For patients with category IIIB (chronic, noninflammatory, abacterial) prostatitis, bedrest for 2 weeks has been advocated. Sitting on ring cushions can be a simple way to minimize symptoms.

In urethritis, sexual activity may be resumed when both partners have completed treatment; barrier methods are encouraged. No one knows for certain when sexual activity may be resumed for the other topics discussed in this article.


Overview of Prostatitis Treatment

To eradicate prostatitis, therapeutic drug levels must be achieved within the prostatic acini. Other challenges include prostatic calculi (a nidus for infection), inspissated secretions and microabscesses, and biofilms produced by offending organisms. Bladder outlet obstruction promotes stasis (and thus infection).

Antimicrobial agents

Nitrofurantoin, sulfonamides, vancomycin, penicillins, and cephalosporins do not penetrate well into the prostate.

Antibiotics that penetrate well into the acid milieu of the prostate are nonpolar and lipid-soluble and have a high measure of acid strength, a small molecular radius, and low serum protein binding. Drugs that best fit these criteria are the fluoroquinolones, doxycycline, minocycline (particularly effective against methicillin-resistant Staphylococcus aureus [MRSA]), trimethoprim (available in the United States only as trimethoprim-sulfamethoxazole [TMP-SMZ]), rifampin, and erythromycin. Of this group, the fluoroquinolones appear to achieve the best tissue levels. Erythromycin maybe used as a second-line agent when culture results are available.

The combination antimicrobial TMP-SMZ generally should be avoided. Only the TMP penetrates the prostate, and its sulfa component may be nephrotoxic. Generally, if TMP is not available because of formulary reasons, resort to quinolone or tetracycline.

Rifampin should never be used alone. It needs to be given with at least 1 other antibiotic to which the pathogen is sensitive, since resistance to rifampin develops quite quickly. Basically, rifampin should be given only under special circumstances.


Quinolones can be divided into first, second, third, and fourth generations. First-generation drugs (nalidixic acid) are not effective for prostatic infections. Third- and fourth-generation fluoroquinolones provide increased streptococcal and anaerobic coverage, which is not needed to treat prostatic infections.

The second-generation quinolones widely used to treat prostatic infection include ciprofloxacin, ofloxacin, norfloxacin, and levofloxacin. These drugs all are bactericidal against gram-negative bacilli; however, because of increased resistance, they are no longer recommended by the US Centers for Disease Control and Prevention (CDC) for N gonorrhoeae infections. [18]

Levofloxacin is most effective against susceptible strains of Enterococcus faecalis and has the advantage of once-daily dosing. Although all the second-generation drugs are used to treat prostatitis, only ofloxacin has been approved by the US Food and Drug Administration (FDA) for this indication.

Antibiotic concentrations

Regarding antibiotic concentrations in the prostate, interpreting the literature is difficult because many different terms are used (eg, "mean concentration in prostatic tissue," "mean concentration in prostatic fluid, prostatic tissue/serum ratio, prostatic fluid/serum ratio," and "stromal/epithelial ratio"). Furthermore, these specimens are often obtained in patients with benign prostatic hypertrophy or carcinoma (ie, not prostatitis).

One also must note the host being tested; TMP-SMZ penetrates the dog prostate far better than it does the human prostate, probably because of differences in semen pH. Although some antibiotics appear to be more suitable by certain criteria, clinical efficacy probably is the bottom line.

Nonantimicrobial agents

Many nonantimicrobial agents are available for prostatitis. Narcotics, nonsteroidal anti-inflammatory drugs (NSAIDs), and tricyclic antidepressants (TCAs; eg, amitriptyline) may be needed for pain relief. Hormonal manipulation with a 5-alpha-reductase inhibitor (finasteride) may decrease glandular inflammation; lycopene, prominent in tomato sauces, also may diminish glandular swelling.

Diazepam and baclofen may decrease sphincter or perineal muscle spasm. Alpha blockers may minimize ductal reflux and dysfunctional voiding.

Because of tadalafil’s possible effect in BPH, it may be useful in preventing recurrent UTIs. [19]

Nonpharmaceutical therapy

Nonpharmaceutical approaches also may be used for prostatitis. An example of "what's old is new" is prostate massage. For decades prior to the antibiotic era, prostate massage was the primary therapy for prostatitis. In difficult cases, repetitive prostate massage may be of benefit because of its potential for improving antibiotic penetration and improving drainage of clogged ducts.


Acute and Chronic Prostatitis Therapy

The primary management of prostatitis is medical therapy. In certain circumstances, however, surgical intervention may be required.

Acute bacterial prostatitis

The intensely inflamed prostate allows antimicrobials to easily pass from the plasma. Hospitalized patients with acute bacterial prostatitis can receive various antimicrobials; parenteral ampicillin and gentamicin often are used. In most cases, the fever resolves in 2 days.

Once improved, appropriate oral agents include TMP-SMZ or a fluoroquinolone (preferred). Therapy should be continued for a minimum of 4 weeks to prevent chronic bacterial prostatitis from developing. Analgesics and stool softeners may be helpful.

If the patient with acute prostatitis has significant urinary obstruction, a Foley catheter can be gently inserted. If this is too uncomfortable, a suprapubic cystotomy may be required. The catheter can usually be removed 1-2 days later.

Chronic bacterial prostatitis

Although chronic bacterial prostatitis is very difficult to cure medically, an attempt should be made to cure this condition with antimicrobial therapy. [20, 21, 22, 23] Long-term results with TMP-SMZ (15-60% cure rate) probably reflect the inability of sulfa drugs to penetrate the noninflamed prostate; the usual regimen is 1 double-strength TMP-SMZ dose twice a day for 3 months.

The combination of TMP with rifampin may be useful but needs further study in chronic bacterial prostatitis. Some evidence suggests that 30 days of a fluoroquinolone may be superior to TMP-SMZ.

Coverage for Chlamydia and Ureaplasma should be considered for patients with category IIIA prostatitis (ie, leukocytosis without demonstrable bacteria).

If therapy fails, appropriate management of chronic bacterial prostatitis is to either treat acute exacerbations or to try chronic suppressive therapy (using half-normal doses).

Antimicrobials are not needed for asymptomatic patients who have evidence of inflammation on biopsy specimens or in secretions (category IV prostatitis); however, antimicrobials should be considered for men who are infertile who have bacteria or inflammation in their semen.


Surgery is indicated only for a few specific conditions, including bladder neck obstruction, prostatic calculi (seen in the image below), and recurrent infection with the same bacteria. [4]

Prostatic calcifications in a male with a urinary Prostatic calcifications in a male with a urinary tract infection.

Transurethral incision of the bladder neck benefits some patients with bladder neck obstruction; however, transurethral balloon dilatation of the prostate is not helpful. A partial transurethral prostatectomy (TURP) removes only part of the infected gland and, therefore, benefits only one third of patients.

Radical or total prostatectomy usually is not required or beneficial; complications include incontinence and impotence. Patients for whom a radical TURP or total prostatectomy should be considered are those with either prostatic calculi or those in whom the same bacteria have been consistently isolated from prostatic specimens. A prostate biopsy may confirm that the bacteria are actually originating from the prostate. These are rarely cured by antimicrobials alone; drainage is best achieved by an ultrasonographically guided needle.

Other surgical interventions may be needed to remove or address other complications, such as bladder calculi (seen in the image below).

Bladder calculi in a male with a urinary tract inf Bladder calculi in a male with a urinary tract infection.

Epididymitis Therapy

For epididymitis, antibiotic treatment for patients younger than 35 years should target Chlamydia and gonococci. Ceftriaxone (intramuscular [IM] 250mg) followed by doxycycline (oral [PO] 100mg twice daily [bid] for 7-10 days) usually is effective.

Epididymitis therapy for older men should address enteric gram-negative rods. TMP-SMZ (double-strength, 1 dose PO bid) or a fluoroquinolone can be used; a 30-day course covers concomitant prostatic infection.

When risk factors for urosepsis are present, such as fever or urinary retention, the patient should be hospitalized, and IV antibiotics should be started.

Of cases of acute scrotum, 90% are caused by epididymitis, torsion of the spermatic chord, and torsion of a testicular appendage.

Torsion of the spermatic cord must be assumed until proven otherwise, because unresolved torsion of the cord is likely to result in irreversible necrosis in less than 12 hours. Consultation with a urologist is mandatory in all but the most clear-cut cases for operative salvage of the torsed testicle.

The surgical intervention is detorsion and orchidopexy, with orchidopexy of the contralateral side (because this side is predisposed to torsion at a later date).


Pyelonephritis Therapy

Most patients with pyelonephritis should undergo imaging studies to rule out other lesions, and IV antibiotic treatment should be initiated empirically with an aminoglycoside and ampicillin. Third- and fourth-generation cephalosporins, a carbapenem, or aztreonam also provides broad gram-negative rod coverage.

Fluid resuscitation is important if the blood pressure is unstable or if the patient is very old.

IV antibiotics are usually continued until the patient is afebrile for 24 hours, and then oral therapy is prescribed to complete at least 14 days of treatment; 30 days of treatment are typically necessary, because most cases are due to chronic prostatitis.

Urologic consultation should be considered for patients whose condition does not respond rapidly to antibiotics. In 1 study, fever persisted for 3 days in 13% of hospitalized patients with pyelonephritis, but none had complications; prolonged fever was associated with high baseline creatinine levels, younger age, and a high peripheral white blood cell (WBC) count.

Emphysematous pyelonephritis

Patients with diabetes are prone to develop emphysematous pyelonephritis, which is characterized by gas formation in the urinary tract. It often requires immediate nephrectomy for survival.


Orchitis, Cystitis, and Urethritis Therapy


For viral orchitis, supportive therapy with scrotal support, cold compresses, and bedrest is all that is needed. The use of estrogens, gammaglobulin, and steroids has been advocated by some, but these have not been shown to decrease the risk for sterility or shorten the duration of symptoms. Symptoms usually resolve spontaneously in 7-10 days.

In cases of mumps orchitis, the patient and their family should be advised that sterility develops in up to 10% of affected individuals. Because no treatment is available for this entity, it is important that the measles-mumps-rubella (MMR) vaccine be administered in childhood and repeated in late adolescence.


For the few men with uncomplicated cystitis, TMP-SMZ can be used in areas where resistant E coli number less than 20%; alternatively, a fluoroquinolone can be used. The length of treatment should be 7-10 days.


For urethritis, ceftriaxone (125mg IM as a single dose) treats penicillinase-producing N gonorrhoeae. Treatment for nongonococcal urethritis (NGU) should also be given (doxycycline 100mg PO bid for 7 days).

Sexual partners should be treated, and patient counseling regarding safe sex is paramount; cases need to be reported to public health departments.


UTI Prevention

Preprocedure prophylaxis, condom use, and appropriate use of urinary catheters can reduce the risk of infections and complications. [24]

Unfortunately, instillation of antimicrobial agents into the bladder (unidirectional flow from the bladder to the bag is best), placing antimicrobials in the urine-drainage bag (which breaks the closed-drainage system), use of methenamine, and rigorous meatal cleansing are of little benefit. A guideline from the Infectious Diseases Society of America (IDSA) advises against the routine addition of antimicrobials or antiseptics to the drainage bag of patients who are catheterized in an effort to reduce the risk for catheter-associated bacteriuria or catheter-associated UTI (CAUTI). [25]

Preoperative prophylaxis

Preoperative antibiotics can reduce complications. Procedures of concern include open, transurethral, or laser prostatectomy; transrectal prostate biopsy; cystoscopy in patients with preoperative bacteriuria or a preoperative indwelling catheter; and renal transplantation. Before antibiotic coverage, the rate of septicemia from a transrectal biopsy was 5-10%; currently, the rate is less than 0.1%. Fluoroquinolones are the prophylactic drugs of choice for urologic procedures.

Post-transurethral prostatectomy (TURP) bacteriuria rates are approximately 10% in patients who receive systemic antibiotics, compared with approximately 35% in those who do not. Single-dose therapy is as effective as longer treatment courses.

Unfortunately, neither cefuroxime nor ciprofloxacin has been shown to reduce the rate of bacteriuria (approximately 20%) after lithotripsy.

The American Heart Association recommends antimicrobial prophylaxis to prevent bacterial endocarditis in patients with moderate- to high-risk cardiac conditions. High-risk conditions include the presence of prosthetic valves, the previous occurrence of bacterial endocarditis, complex cyanotic congenital heart diseases, and the presence of surgically constructed systemic pulmonic shunts. Moderate-risk conditions include most other congenital heart diseases, hypertrophic cardiac myopathy, and mitral prolapse with regurgitation.

For patients with moderate- or high-risk cardiac conditions, urologic procedures that warrant prophylaxis include prostate surgery, cystoscopy, and urethral dilatation; prophylaxis is not recommended for inserting a Foley catheter in a patient with uninfected urine.

Antibiotic regimens

Regimens for high-risk patients include ampicillin (or vancomycin) plus gentamicin. Ampicillin is given as 2000mg IM or IV within 30 minutes of starting the procedure; 6 hours later, 1000mg of ampicillin (or amoxicillin PO) is given once. Gentamicin is dosed at 1.5 mg/kg IV or IM (not to exceed 120mg) and is given only once, with the first dose of ampicillin. For patients allergic to ampicillin, 1000mg of vancomycin is given IV over 1-2 hours only once; it should be completed within 30 minutes of starting the procedure.

For kidney transplant recipients, TMP/SMZ (1 dose PO daily) beginning 2-4 days after surgery and continuing for 4-8 months was found to reduce the incidence rate of UTIs from 38% to 8% (especially after the catheter was removed), cut febrile hospital days and bacterial infections (during and after hospitalization) in half, and reduce graft rejection.

Regimens for moderate-risk patients include amoxicillin or vancomycin. Amoxicillin is given only once, in a 2000mg dose administered orally 1 hour before the procedure. For patients allergic to amoxicillin, 1000mg of vancomycin is given intravenously over 1-2 hours only once; it should be completed within 30 minutes of starting the procedure.

Prevention of STD-related infections

Condoms are useful in preventing sexually transmitted diseases (STD) such as urethritis; latex condoms help to prevent the transmission of the human immunodeficiency virus (HIV). Remember that these patients are at risk for more than 1 infection (gonorrhea, chlamydia, syphilis, hepatitis B, herpes, Trichomonas, HIV). The risk of acquiring HIV from an infected sexual partner is approximately 0.3% on average; the risk is 30-50% for herpes and gonorrhea. If abstaining is not an option, condoms are the best protection.

Prevention of CAUTIs

According to the IDSA 2009 guideline for the diagnosis, prevention, and treatment of CAUTI in adults, if an indwelling catheter has been in place for more than 2 weeks at the onset of CAUTI and remains indicated, the catheter should be replaced to promote continued resolution of symptoms and to reduce the risk of subsequent catheter-associated infection. [25]

The guideline also states that an indwelling catheter may be considered at the patient’s request in exceptional cases and when other approaches to management of incontinence have proven ineffective. [25]

According to the IDSA guideline, strategies to reduce the use of catheterization have been proven effective and may have more impact on the incidence of CAUTI and asymptomatic bacteriuria than other approaches addressed in the guidelines. [25]

The CDC 2009 guideline for the prevention of CAUTI states that catheter use and duration should be minimized in all patients, especially those at higher risk for CAUTI (women, elderly persons, patients with impaired immunity). [26] The CDC guideline recommends the following preventive measures [26] :

  • Catheters should be used only for appropriate indications
  • Catheters should be kept in place only for as long as needed
  • Indwelling catheters in operative patients should be removed as soon as possible postoperatively
  • Use of urinary catheters for treatment of incontinence should be avoided in patients and nursing home residents

Appropriate indications for indwelling urethral catheters include the relief of bladder outlet obstruction, treatment of urinary incontinence in a patient with an open sacral wound, and monitoring of urine output; they are also indicated for use during prolonged surgical procedures.

The CDC guideline recommends that clinicians avoid the routine use of systemic antimicrobials to prevent CAUTI in patients requiring either short- or long-term catheterization. [26]

Polymicrobial bladder infections are not uncommon in catheterized patients, and nonpathogenic organisms can be significant in catheterized patients. According to the CDC guideline, in acute care hospital settings, aseptic technique and sterile equipment for catheter insertion must be used to minimize the risk for CAUTI. [26]

At least 7 steps can be taken to prevent CAUTIs. However, although these steps can postpone a UTI for weeks, they will not be totally successful in patients with long-term catheterization.

Step 1

Catheterization should be avoided when not required (catheters have been found to be unnecessary in 41-58% of patient days) and should be terminated as soon as possible.

Step 2

Suprapubic catheters are associated with a lower risk for UTI. For men who require long-term catheterization, local genitourinary complications (meatal erosion, prostatitis, epididymitis) may be reduced, and patients may be more satisfied, but mechanical complications are increased. Contraindications include bleeding disorders, previous lower abdominal surgery or irradiation, and morbid obesity.

Step 3

Condom catheters are also associated with a lower risk of bacteriuria than are indwelling catheters, as long as the catheter is not manipulated frequently. However, these are difficult to use in uncircumcised men.

Step 4

Most patients using intermittent catheterization become bacteriuric within a few weeks. The incidence rate is 1-3% per insertion.

Step 5

Aseptic indwelling catheter insertion, a properly maintained closed-drainage system (with ports in the distal catheter for needle aspiration of urine [25] ), and unobstructed urine flow are essential. Catheters with hydrophilic coatings reduce or delay the onset of bacteriuria and are more comfortable for the patient. Only properly trained individuals who are skilled in the correct technique of aseptic catheter insertion and maintenance should take on this task. [26]

Step 6

Urinary catheters coated with silver also reduce the risk for CAUTI. Silver alloy seems to be more effective than silver oxide, and using these more expensive catheters in patients who are at highest risk is reasonable. [27]

Step 7

Because many CAUTIs occur in clusters, good handwashing before and after catheter care is essential.

See Urinary Catheterization in Men and Urinary Catheterization in Women for procedural information on catheterization.


Long-Term Monitoring

If a patient fails to respond to antibiotics, an abscess should be considered. Upper- and lower-tract studies (eg, helical CT scanning, ultrasonography, cystoscopy) are important to consider in older patients at risk for anatomic abnormalities.

Follow-up urine cultures are warranted in males with UTIs; however, follow-up urethral cultures are not routinely warranted unless the man is symptomatic, in which case the symptoms are likely to be the result of exogenous reinfection.

Consider admission for UTI for elderly patients and patients who have diabetes, who are immunocompromised, or who show signs of toxicity such as dehydration, hyperpyrexia, rigors, or inability to tolerate oral fluids or medications. Also admit if the patient is unable to care for themself.