Nerve Entrapment Syndromes Treatment & Management

Updated: Jan 04, 2023
  • Author: Amgad Saddik Hanna, MD; Chief Editor: Brian H Kopell, MD  more...
  • Print

Medical Therapy

Conservative measures should be tried first in most cases of entrapment neuropathy. Meralgia paresthetica secondary to pregnancy and obesity and intrapartum median nerve compression at the wrist may become completely asymptomatic after delivery or weight loss. Compression neuropathies secondary to systemic disease such as thyroid disease and autoimmune conditions may be effectively managed with treatment of etiologic factors.

In uncomplicated, nonsystemic cases, conservative management mainly consists of educating the patient to adopt avoidance behaviors. This seldom is practical in young, physically active patients, especially if symptoms are occupation related. In cases of posterior interosseous nerve entrapment at the elbow caused by certain kinds of prosthetic devices (eg, Canadian crutches), redesigning or substituting the device may result in relief. Wrist splints for CTS are commonly prescribed but rarely provide long-term control. [29]

Conditioning exercises and periodic injections around the nerve with bupivacaine and dexamethasone may accord long-term relief. Surgery is recommended for patients with symptoms refractory to nonoperative measures and/or for those with severe and long-standing symptoms or weakness.

In a study of 50 women with CTS who were randomly assigned to manual therapy or surgery for treatment, researchers concluded that neither treatment resulted in changes in cervical range of motion. [30]



Operative Details

The general principle of operative intervention involves decompression of the nerves in zones of compression. In some cases, surgical beds may be improved, or nerves can be transposed. [31]

Carpal tunnel syndrome

Anesthesia may be local, regional, or general. Use of a tourniquet is optional. The surgical incision should be made directly over the palmaris longus tendon in line with the radial aspect of the ring finger, roughly coinciding with the longitudinal midpalmar crease. A 3-cm palmar incision may be used over the extent of the TCL. The distal extent of the incision can be approximated by the intersection of a line from the abducted thumb to the hook of the hamate and the flexed ring finger. The proximal extent of the TCL is the distal wrist crease. A small opening is made in the ulnar portion of the TCL, and an elevator is passed beneath the ligament. The ligament is sharply incised ulnarly. The recurrent branch is not routinely visualized.

Fat surrounding the superficial palmar arch should be visualized at the distal extent of the decompression. Under direct visualization, a portion of the antebrachial fascia should be released proximally. Shorter or longer skin incisions can be used, each with potential advantages and disadvantages. A shorter incision may decrease postoperative pain but may make complete visualization more challenging. A longer incision crossing the wrist crease allows identification of the median nerve beneath the antebrachial fascia before it passes under the ligament; however, healing of this portion of the incision may be slower.

Care should be taken not to injure (1) cutaneous branches during superficial exposure, (2) the ulnar neurovascular bundle with the blade of the retractor, (3) the median nerve itself, (4) its recurrent and palmar cutaneous branches by staying ulnar during carpal tunnel release, or (5) the digital branches (and interconnections) during the distal portion of the dissection.

The tourniquet, if used, is often released by surgeons prior to wound closure.

Use of the endoscopic retinaculotome via the 2-portal or single-portal technique has been advocated, with reports indicating that more rapid recovery (including faster return to work) and less postoperative pain are achievable compared to open surgery. [32] Benefits are short lived and must be counted against a higher complication rate of injury to ulnar and median nerves, and to the superficial palmar (arterial) arch in some series.

In a survey of 716 hand surgeons conducted by the American Society for Surgery of the Hand to examine carpal tunnel surgery, 90% said they used electrodiagnostic testing at least occasionally. IV sedation with local anesthesia was the most common practice (used by 43%), followed by Bier block (at 18%). About 50% did not administer preoperative antibiotics at the time of surgery. A mini-open incision was most commonly used (50%). Postoperative pain management was variable, with hydrocodone and derivatives the most commonly used forms of postoperative pain management (at 61%). [33, 34]

Ulnar entrapment at the elbow

Five surgical procedures can be used to correct ulnar entrapment at the elbow, but according to the literature, the specific indications for each are far from clear. In most instances, the surgeon's preference and expertise should influence the selection. [35, 36, 37, 38, 39]

In situ decompression

An incision is made posterior to the medial humeral epicondyle overlying the ulnar nerve. Various techniques exist. In theory, the cubital tunnel is unroofed in the vicinity of the cubital tunnel retinaculum and the proximal portion of the flexor carpi ulnaris. This limited approach can be performed under local anesthesia via a short incision. The nerve is identified proximal to the medial epicondyle and is decompressed distal to the medial epicondyle for several centimeters. Proximal potential anatomic sites of compression are not addressed. Some surgeons and authors do decompress more proximally, addressing the medial intermuscular septum and the arcade of Struthers. Still others perform circumferential neurolysis. More extensive proximal decompression and neurolysis make the ulnar nerve more apt to dislocate with elbow flexion.

The nerve is not circumferentially dissected out, which presumably avoids devascularization and damage to slender muscular branches to the flexor carpi ulnaris. This procedure works well with milder, less chronic forms of the disease. Many surgeons are performing this procedure because of published findings of randomized studies demonstrating equal efficacy and decreased complications compared to other transposition techniques. In cases of spontaneous nerve subluxation or in cases of excessive scarring or osteophyte formation within the cubital tunnel, the authors believe that the nerve should be anteriorly transposed.

Medial epicondylectomy

The nerve is first decompressed in situ. The medial epicondyle is subperiosteally exposed and removed without disturbing the common flexor origin of the pronator teres. Then, the soft tissues over the osteotomy bed are carefully approximated.

Anterior subcutaneous transposition

After neurolysis, the nerve is circumferentially dissected and mobilized from its cubital tunnel bed. Sensory fibers to the elbow joints are severed. Twigs that supply the upper fibers of the flexor carpi ulnaris should be preserved and carefully dissected away from the epineurium to gain length to allow the nerve to be moved onto the anterior surface of the elbow flexor muscles in front of the medial epicondyle.

To avoid kinking the nerve at both ends of the transposition, a segment of the medial intermuscular septum is removed, and the aponeurosis and the muscle fibers of the flexor carpi ulnaris are split longitudinally between the 2 heads. The nerve is then gently placed in a subcutaneous bed. A fasciodermal flap may be fashioned, or several sutures may be placed between the skin flap and the surface of the pronator teres aponeurosis of the common flexor origin just in front of the medial epicondyle.

(See the image below.)

Common peroneal nerve decompression at the fibular Common peroneal nerve decompression at the fibular neck. A: The common peroneal nerve (P) has been identified and mobilized proximal to the fibular tunnel region, fascia (F) covering peroneus longus. B: The common peroneal nerve has been traced through the fibular tunnel. The fascia overlying the peroneus longus muscle has been divided and the muscle (M) has been retracted. The fascial band overlying the nerve is released.


Intramuscular transposition

Adson originated this procedure, supposedly to lessen the vulnerability of the nerve in a subcutaneous location. After transposition, the nerve is placed in a shallow muscular trough created in the pronator teres and flexor carpi ulnaris.

Submuscular transposition

In 1942, Learmonth described this procedure of placing the nerve in an intermuscular plane lined by muscle fascia, where the nerve can glide with joint motions without being “stuck down,” as in the intramuscular or subcutaneous compartments. [40]

The pronator origin is divided often using a step-cut lengthening format, as is the origin of the flexor carpi ulnaris. The anteriorly transposed ulnar nerve is placed under the divided muscles on a fascial bed over the flexor digitorum superficialis and brachialis parallel to the median nerve. The cut ends of the divided tendons are reapproximated in Z-plasty format so that they are lengthened, in effect to lessen tightness over the underlying nerve bed.

Gentle physical therapy is instituted to gradually return the joint to full extension over 3 weeks.

Ulnar nerve entrapment at the wrist

A longitudinal incision is made along the course of the ulnar nerve proximal to the wrist, which curves across the wrist crease and then courses slightly toward the hook of the hamate. The ulnar nerve and vessels are mobilized proximally. The deep and superficial branches are protected and decompressed. The fibrotic arch over the deep branch is released.

Posterior interosseous nerve syndrome

An incision is made on the lateral side of the biceps muscle and is extended across the elbow and along the border of the brachioradialis. The radial nerve is picked up within the groove made by the biceps/brachialis and the forearm extensor group. This groove is held open by self-retaining retractors. The lateral antebrachial cutaneous nerve, if seen, should be protected. The radial nerve is then traced toward the upper border of the supinator. The bifurcation into the deep branch of the radial nerve and the superficial radial nerve (SRN) are readily seen just above and in front of the radiocapitellar joint. The SRN courses deep to the brachioradialis and may be picked up first, in which case it is traced backward to locate the much deeper PIN. [41]

Once the arcade is found, it is divided, together with fibers of the superficial supinator muscle, to expose the entire length of the PIN within the radial tunnel. The fascial thickening associated with the joint capsule also is divided, as is the arterial leash of Henry. The PIN can be exposed through a posterolateral incision with forward reflection of the extensor muscles.

Suprascapular nerve entrapment

The patient is placed prone, preferably in a Mayfield head holder. An incision is made 2 cm above and parallel to the scapular spine. The horizontal trapezial fibers are atraumatically split to expose the constant fat pad that separates the trapezius from the supraspinatus muscle. Digital palpation along the sharp, bony edge of the superior scapular border detects the abrupt change into rubbery springiness of the suprascapular ligament. Blunt dissection by firm, sweeping motion using a “peanut” dissector readily reveals the glistening, taut ligament. The suprascapular artery, which crosses above the ligament, is swept aside. The ligament is cut and the bony notch is enlarged with a Kerrison rongeur, if necessary. The nerve is exposed and decompressed. The operative microscope is often employed. [20]

Meralgia paresthetica

Surgical decompression, when necessary, is very effective, but the recurrence rate is 15-20%. A skin incision is made along the medial border of the sartorius, 2 cm below the ASIS, and extends about 6-7 cm. The fascia over the sartorius is exposed. The fascia is then opened in one location and is carefully extended. The nerve is located at the medial border of the muscle or just behind it. It may be attached to the underside of the fascial sheath, so gentle handling is necessary to avoid accidentally cutting the nerve. [42]

The nerve then is traced proximally toward its exit site just medial to the ASIS. The bands of the inguinal ligament over the nerve are divided. If a sharp ridge is palpable just below the nerve, this should also be divided to completely free the nerve of sharp surfaces. The nerve is then followed into the pelvis for a distance of 2-3 cm to ensure clearance of other iliacus fascial bands.

In spite of the incision on the inguinal ligament (on its lateral side), hernia is extremely rare after this procedure. Recurrence of symptoms can be treated with transection of the nerve. After the nerve is freed at the ASIS and proximally toward the pelvis, gentle downward traction is applied and neurectomy is done proximally. This allows the proximal stump to retract proximally into deep tissues. This is thought to decrease painful neuroma formation on the surface of the thigh afterward. Patients tend to adjust well to the numbness. Several studies have reported excellent long-term control of symptoms with nerve transection as primary treatment.

Various surgical procedures can be applied in the treatment of meralgia paresthetica, with the main ones being neurolysis and neurectomy of the lateral femoral cutaneous nerve. In a study comparing the 2 procedures, pain relief was found to be more successful with neurectomy than with neurolysis. Neurolysis was performed in 8 patients, and neurectomy in 14 patients. Successful pain reduction was achieved in 93.3% after neurectomy versus 37.5% after neurolysis. [43]

Common peroneal nerve entrapment

Decompression can be performed under local anesthesia or with sedation. [44, 45, 46] An incision is made obliquely at the neck of the fibula. The deep fascia is opened, exposing the common peroneal nerve. The nerve is followed proximally along the biceps femoris tendon. Distally, the fascia over the peroneus longus is opened. The muscle is then retracted to expose the fascia deep to the muscle. The latter is divided to completely unroof the nerve and expose the terminal branches. The subcutaneous tissue and skin are then closed. [44, 45]

(See the image below.)

Median nerve (M) after decompression at the wrist; Median nerve (M) after decompression at the wrist; note the congestion from the longstanding compression. The transverse carpal ligament (arrows) has been transected. Fat is observed distally.

Tarsal tunnel syndrome

The incision should begin 2 cm proximal to the medial malleolus to identify the neurovascular bundle. The nerve is then followed distally with release of the flexor retinaculum. Mass lesions or fibrous septa are identified and removed. Each of the plantar nerve canals is opened into the plantar surface. A tight fascial band that arises from the border of the abductor hallucis muscle and roofing over the plantar tunnels is divided. All intersecting septa are resected to convert the tunnels into a single cavity. The calcaneal branch is also decompressed. The ankle is placed in a soft splint and is elevated for 3 days, with minimal weightbearing allowed for an additional week. [21, 47]

Thoracic outlet syndrome

A supraclavicular approach to the brachial plexus is performed. Careful dissection of the brachial plexus roots and trunks is followed by exposure of the subclavian artery. Ample decompression of the artery and the lower trunk of the brachial plexus is achieved by resecting fibrous bands, scalenus anterior, cervical rib, or enlarged transverse process of C7. Decompression of C8 and T1 should be done to the level of their foramina. Some surgeons may perform a transaxillary approach by itself or combined with a supraclavicular approach for scalenectomy, rib resection, and neurovascular decompression. [48]


Most decompressions are performed safely in an outpatient setting. Surgical complications from anesthesia and coexisting medical conditions rarely occur. Damage to surrounding nerves or arteries from manipulation is also unusual.

Postoperative infection may develop, especially among patients with diabetes mellitus; this unfortunately predisposes the patient to recurrence of entrapment.


Outcome and Prognosis

In general, surgical outcomes are excellent in primary cases for improvement of pain and function. In secondary cases, results are fair to good; in these situations, pain relief is often the goal.

Carpal tunnel syndrome

Surgery is associated with a 70-90% rate of improvement in median nerve–related symptoms. [49]

The most common potential complications include the following:

  • Misdiagnosis

  • Incomplete sectioning of the TCL

  • Palmar pain

  • Pillar pain along the thenar and hypothenar eminences (probably related to adjustment of carpal bone alignments)

  • Temporary loss of grip strength secondary to relocation of the origin of the hypothenar and thenar muscles and bowing of flexor tendons through the TCL incision

Most of these complications are transient. Neurovascular complications rarely occur and have been reported with open and endoscopic techniques. Neural injury may affect median and ulnar nerves, digital nerves (or communicating branches), or cutaneous branches, and recurrent motor branch and vascular injury may affect the superficial palmar arch or ulnar artery.

Postoperative infection is reported in approximately 0-5% of patients. Palmar space infection is an extremely serious emergency that can result in permanent adhesive tenosynovitis and recurrent median nerve compression. Open drainage, use of a drain, and high-dose intravenous antibiotics should be instituted immediately.

Ulnar nerve compression at the elbow

Adherence to strict surgical principles results in a good outcome in approximately 80% of patients, regardless of the procedure chosen. Surgical failure may be due to inadequate decompression or secondary compression of the ulnar nerve. One should also consider the possibility of a neuroma of the medial antebrachial cutaneous nerve in a patient with medial, volar forearm pain following previous ulnar nerve surgery. Revision ulnar nerve surgery most commonly employs a submuscular transposition, although this technique is by far the most complex and difficult to perfect.

Posterior interosseous nerve syndrome

Good to excellent outcomes are often achieved in these patients following spontaneous recovery or decompression.

Suprascapular nerve entrapment

Symptomatic improvement is frequently seen in patients who undergo decompression. Often this may be seen within days of surgery, especially with respect to external rotation. However, long-term weakness and atrophy may take many months to improve, and some patients never regain full strength. Early detection is an important predictor of outcome in suprascapular entrapment.

Ulnar nerve compression at the wrist

Improvement is expected in painful cases and in those with mild motor loss. In some cases, severe atrophy may improve due to the relatively short distances for reinnervation from the site of compression to the muscle endplate. Long-standing atrophy likely will not improve.

Meralgia paresthetica

Surgical decompression is very effective, but the recurrence rate is 15-20%.

Tarsal tunnel syndrome

In general, 75% of patients enjoy significant improvement with surgical decompression of the tarsal tunnel. The best surgical results are observed in patients with mass lesions within the tunnel; the worst results are seen in patients who have undergone previous exploration for pain and in those with plantar fasciitis and autoimmune disease.