Vesicovaginal Fistula

Updated: Mar 01, 2016
  • Author: John Spurlock, MD; Chief Editor: Christine Isaacs, MD  more...
  • Print
Overview

Background

Vesicovaginal fistula (VVF) is a subtype of female urogenital fistula (UGF). VVF is an abnormal fistulous tract extending between the bladder and the vagina that allows the continuous involuntary discharge of urine into the vaginal vault. In addition to the medical sequelae from these fistulas, they often have a profound effect on the patient's emotional well-being. This article reviews the etiology of VVF, the surgical principles of repair, and the techniques developed for their repair.

Next:

History of the Procedure

The earliest evidence of a VVF was found in 1923, when Derry examined the mummified body of Henhenit, a lady in the court of Mentuhotep of the 11th dynasty who reigned around 2050 BC. These dissections revealed a large VVF in a markedly contracted pelvis. The Kahun papyrus and Ebers papyrus failed to mention VVF. However, not until 950 AD did Avicenna correlate the combination of pregnancy at a young age and difficult labor with the formation of a vesicovaginal communication. The term fistula (previously called ruptura) was not used until 1597, when Luiz de Mercado first coined the term.

The first basic surgical principles for the repair of VVFs were described in 1663 by Hedrik von Roonhuyse. He stressed the use of a speculum and the lithotomy position to gain adequate exposure and denudation of the margin of the bladder wall, with reapproximation of the edges using sharpened swan quills. Later, using Roonhuyse's technique, Johann Fatio documented the first successful VVF repair in 1675. However, not until the 19th century did successful repair of VVFs become common. In 1834, Jobert de Lamballe published a report of his VVF repairs in which skin flaps were used in the vagina. Later, he advocated the use of tension-free closures using vaginal-releasing incisions. [1]

James Marion Sims published his famous discourse on the treatment of VVF in 1852. [2] Using leaden or silver wire, as John Peter Mettauer had done successfully in 1838, Sims achieved success on his 30th surgical attempt on a slave named Anarcha. Sims emphasized the importance of good exposure, adequate resection of the fistula and scarred vaginal edges, and the critical importance of continuous postoperative bladder drainage. Sims disparaged the popular technique of coagulation (by the application of silver nitrate), stating it proved entirely ineffective except in the rare case of a very small fistula.

In 1861, Maurice Collis was the first to report a layered closure technique, [3] and in 1893, Schuchardt described a pararectal incision to facilitate improved exposure for the repair of a high VVF. [4] Trendelenburg, in 1881-1890, described a suprapubic approach. [5] Maisonneuve [6] and Mackenrodt [7] each described the key technique that involves separating the bladder from the vaginal mucosa and suturing each layer individually. The famous gynecologist, Dr. Kelly also described both a vaginal repair of VVF in 1896, and a suprapubic closure in 1906. Dr Kelly also advocated the use of preoperative ureteral catheters to minimize the risk of ureteral injury.

During the early 20th century, several additional techniques were used to improve outcome for the repair of VVF. In 1942, Latzko published his partial colpocleisis technique for repair of posthysterectomy VVF, in which he used the resection of scarred vaginal mucosa and a layered horizontal closure. [8] Latzko's procedure has been cited, with his 95-100% success rates noted, in numerous surgeons' experiences. In 1950, O'Conor and Stovsky popularized the transabdominal approach and also proposed the use of electrocoagulation as an initial treatment modality in women with VVFs of 3.5 mm or less, citing a 73% success rate.

Additionally, numerous surgeons are credited for the development of various flaps for interposition between the bladder and vaginal walls to minimize the failure of VVF repairs. The list includes Garlock in 1928 [9] (pedicled gracilis muscle flap), Martius in 1928 [10] (pedicled bulbocavernosus flap), Ingelman-Sundberg in 1960 [11] (pubococcygeus, bulbocavernosus, rectus abdominis, and gracilis), and Kiricuta and Goldstein in 1972 [12] (pedicled omental flaps).

This historical outline of surgical advances is by no means complete. Countless surgeons not listed above have helped raise awareness of VVF with the public and in the medical community, while making substantial contributions in the research and surgical management of this morbid condition.

Previous
Next:

Problem

A VVF is an abnormal communication between the urinary bladder and the vagina that results in the continuous involuntary discharge of urine into the vaginal vault. An accurate diagnosis is paramount before consideration of repair. A variety of methods are available to the clinician, and any excessive or suspicious vaginal discharge in a patient who recently underwent pelvic surgery or who has a history of pelvic radiotherapy should be evaluated promptly for a UGF.

Previous
Next:

Epidemiology

Frequency

In developing countries, the predominant cause of VVF is prolonged obstructed labor (97%). VVFs are associated with marked pressure necrosis, edema, tissue sloughing, and cicatrization. The frequency of VVF is largely underreported in developing countries.

The magnitude of the fistula problem worldwide is unknown but believed to be immense. In Nigeria alone, Harrison (1985) reported a vesicovaginal fistula rate of 350 cases per 100,000 deliveries at a university teaching hospital. The Nigerian Federal Minister for Women Affairs and Youth Development, Hajiya Aish M.S. Ismail, has estimated that the number of unrepaired VVFs in Nigeria is between 800,000 and 1,000,000 (2001). In 1991, the World Health Organization identified the following geographic areas where obstetric fistula prevalence is high: virtually all of Africa and south Asia, the less-developed parts of Oceana, Latin America, the Middle East, remote regions of Central Asia, and isolated areas of the former Soviet Union and Soviet-dominated eastern Europe. [13, 14]

In contrast to developing countries, countries that practice modern obstetrics have a low rate of UGFs and VVF remains the most common type. Less frequently, UGFs may occur (1) between the bladder and cervix or uterus; (2) between the ureter and vagina, uterus, or cervix; and (3) between the urethra and vagina. Of note, a ureteric injury is identified in association with 10-15% of VVFs.

The majority of UGFs in developed countries are a consequence of gynecological surgery. Consequently, the incidence may change as surgical management changes. The incidence of VVF in the United States is debated. Although most authors quote an incidence rate of VVF after total abdominal hysterectomy (TAH) of 0.5-2%, others suggest only a 0.05% incidence rate of injury to either the bladder or ureter. So if injuries to the bladder and ureters occur in roughly 1% of major gynecologic procedures, and approximately 75% are associated with hysterectomy, and if there are about 500,000 hysterectomies performed each year then about 5,000 women will experience an injury.

Lee, in a series of 35,000 hysterectomies, found more than 80% of genitourinary fistulas arose from gynecological surgery for benign disease. Uncomplicated TAH accounted for more than 70% of these surgeries. The indications for these TAH surgeries excluded the more complex diagnoses, such as pelvic inflammatory disease (PID), endometriosis, and carcinoma; instead, they were performed primarily for diagnoses such as abnormal bleeding, fibroids, and prolapse. In approximately 10% of cases of VVF, obstetrical trauma was the associated etiology. Radiotherapy and surgery for malignant gynecologic disease each accounted for 5% of cases.

Notably, a rise in incidence of UGFs paralleled the switch in policy toward the preference of performing a total hysterectomy over a supracervical hysterectomy.

Previous
Next:

Etiology

Developing countries

Numerous factors contribute to the development of VVF in developing countries. Commonly, these are areas where the culture encourages marriage and conception at a young age, often before full pelvic growth has been achieved. Chronic malnutrition further limits pelvic dimensions, increasing the risk of cephalopelvic disproportion and malpresentation. In addition, few women are attended by qualified health care professionals or have access to medical facilities during childbirth; their obstructed labor may be protracted for days or weeks. [13, 14]

The effect of prolonged impaction of the fetal presenting part in the pelvis is one of widespread tissue edema, hypoxia, necrosis, and sloughing resulting from prolonged pressure on the soft tissues of the vagina, bladder base, and urethra. Typically in these countries, the UGF is large and involves the bladder, urethra, bladder trigone, and the anterior cervix. Complex neuropathic bladder dysfunction and urethral sphincteric incompetency often result, even if the fistula can be repaired successfully. Other cultural factors that increase the likelihood of obstetrical UGFs include outlet obstruction due to female circumcision and the practice of harmful traditional medical practices such as Gishiri incisions (anterior vaginal wall incisions) and the insertion of caustic substances into the vagina with the intent to treat a gynecologic condition or to help the vagina to return to its nulliparous state.

Developed countries

VVFs in developed countries are attributed predominantly to inadvertent bladder injury during pelvic surgery (90%). They involve a relatively limited focal bladder injury leading to smaller VVFs than are observed in developing countries. Numerous authors highlight the risk of various types of bladder trauma during pelvic surgery. Such injuries include unrecognized intraoperative laceration of the bladder, bladder wall injury from electrocautery or mechanical crushing, and the dissection of the bladder into an incorrect plane, causing avascular necrosis.

Suture placement through the bladder wall in itself may not play a significant role in VVF development. However, the risk of formation of a hematoma or avascular necrosis after a suture is placed through the bladder wall can lead to infection, abscess, and subsequent suture erosion through the bladder wall. This wall defect permits the escape of urine into the vagina and may be followed by an eventual epithelialization of the track.

Gynecologic procedures are the most common iatrogenic factor. Symmonds evaluated 800 genitourinary fistulas over a 30-year period at the Mayo Clinic. Of these, 85% of the VVFs were related to pelvic operations and 75% were related to hysterectomy, with more than 50% being secondary to simple uncomplicated total abdominal or vaginal hysterectomy. Symmonds also found that 5% of these VVFs were obstetric and 10% occurred after radiotherapy. Obstetric UGFs in modern centers include vaginal lacerations from forceps rotations, cesarean delivery, hysterectomy, and ruptured uterus.

Other types of pelvic surgery (eg, urologic, gastrointestinal surgery) also contribute to the incidence of VVFs; such surgeries include suburethral sling procedures, surgical repair of urethral diverticulum, electrocautery of bladder papilloma, and surgery for pelvic carcinomas. Other less common causes of VVFs include pelvic infections (eg, tuberculosis, syphilis, lymphogranuloma venereum), vaginal trauma, and vaginal erosion with foreign objects (eg, neglected pessary). Lastly, a congenital urogenital abnormality may exist that includes a VVF.

Risk factors that predispose to VVFs include prior pelvic or vaginal surgery, previous PID, ischemia, diabetes, arteriosclerosis, carcinoma, endometriosis, anatomic distortion by uterine myomas, and infection, particularly postoperative cuff abscess. Tancer found prior cesarean delivery to be the most common factor predisposing to vault fistula after abdominal surgery in his series of 110 cases; here, 29% were associated with prior cesarean delivery. [15] Of interest, Tancer also noted 67% of the VVFs in his series occurred in the absence of any risk factors. He also noted that 24 patients incurred a bladder injury during hysterectomy; the injury was recognized intraoperatively and received immediate intraoperative repair (often by a consulting specialist). Despite prompt identification, treatment, and postoperative continuous bladder drainage for 7-10 days, a VVF could not be averted.

Previous
Next:

Presentation

The uncontrolled leakage of urine into the vagina is the hallmark symptom of patients with UGFs. Patients may complain of urinary incontinence or an increase in vaginal discharge following pelvic surgery or pelvic radiotherapy with or without antecedent surgery. The drainage may be continuous; however, in the presence of a very small UGF, it may be intermittent. Increased postoperative abdominal, pelvic, or flank pain; prolonged ileus; and fever should alert the physician to possible urinoma or urine ascites and mandates expeditious evaluation. Recurrent cystitis or pyelonephritis, abnormal urinary stream, and hematuria also should initiate a workup for UGF.

The time from initial insult to clinical presentation depends on the etiology of the VVF. A VVF secondary to a bladder laceration typically presents immediately. Approximately 90% of genitourinary fistulas associated with pelvic surgery are symptomatic within 7-30 days postoperatively. An anterior vaginal wall laceration associated with obstetric fistulas typically (75%) presents in the first 24 hours of delivery. In contrast, radiation-induced UGFs are associated with slowly progressive devascularization necrosis and may present 30 days to 30 years later. Patients with radiation-induced VVFs initially present with symptoms of radiation cystitis, hematuria, and bladder contracture.

Previous
Next:

Indications

Symptomatic VVF merits appropriate treatment. Further details regarding the indications for a specific procedure are described in Surgical objectives or principles.

Previous
Next:

Contraindications

In general, no absolute contraindications exist for the attempted correction of a VVF in patients who can medically tolerate a surgical procedure.

Previous