Rotator Cuff Disease Treatment & Management

Updated: Apr 21, 2016
  • Author: André Roy, MD, FRCPC; Chief Editor: Stephen Kishner, MD, MHA  more...
  • Print
Treatment

Rehabilitation Program

Physical Therapy

Physical therapy can be a useful adjunct in the conservative treatment of patients with degenerative rotator cuffs. Although there are numerous studies on the conservative treatment and surgical approach of the painful shoulder and, more specifically, the rotator cuff, the conclusions of a review of randomized controlled trials of interventions for painful shoulder were that little evidence supports or refutes the efficacy of common interventions for shoulder pain. Lack of definition and strict diagnostic criteria for the different painful shoulder conditions, valid randomization procedures, blinding, valid scales for outcome measurement, and heterogeneous populations are among the reasons why it is difficult to draw firm conclusions about the efficacy of any of these interventions.

In his/her approach to conservative treatment, the clinician must be critical and try to use an evidence-based medicine approach as much as possible when planning the patient's treatment. The clinician also must use a combination of experience and intuition to compensate for the lack of scientific evidence supporting the different therapeutic modalities to be prescribed.

The conservative treatment of the degenerative rotator cuff  [25]

  • Pain relief
    • Avoidance of painful motions and activities
    • Simple analgesics
    • Nonsteroidal anti-inflammatory drugs
    • Physical modalities
    • Manual physical therapy
    • Subacromial corticosteroid injection
    • A new promising procedure called the bupivacaine suprascapular nerve block
  • Restoration of motion
    • Stretching of the glenohumeral capsule and muscles
    • Manual physical therapy of the glenohumeral, scapulothoracic, acromioclavicular, and sternoclavicular joints and the parascapular and scapula-stabilizer muscles
    • Normal scapulohumeral rhythm must be restored.
    • Manual therapy of the cervicodorsal spine, because of its close relationship with the shoulder, often is necessary. Restoration of strength and function: Restoration of strength is achieved by strengthening of the rotator cuff muscles, the scapula-stabilizer muscles and the long humeral depressor muscles (latissimus dorsi and pectoralis major).
  • Proprioception: In a young individual who has premature degenerative rotator cuff changes because of shoulder instability, proprioceptive exercises must complement strengthening exercises.
  • Sport-specific rehabilitation
    • In a young individual or athlete, sport-specific exercises must be included before resuming normal sport activities.
    • With the aging of the active population, this aspect of the rehabilitation, combined with progressive return to sport activities should not be omitted.

A study by Collin et al indicated that in patients with massive, irreparable rotator cuff tears, rehabilitation outcomes are more successful in those with isolated posterior tears than in patients with anterior tears or tears in three or more tendons. In the study, which involved 45 patients, anterior shoulder elevation of over 160° was achieved in 24 individuals, with frequent treatment failures occurring in those with anterior tears or tears in a minimum of three tendons. [26]

 

Physical modalities for rotator cuff disease

Physical modalities are used widely in the treatment of rotator cuff disease. Physical therapists should be diligent in choosing the modalities and their parameters to be used for treatment. Some excellent review articles have been published on the different therapeutic modalities for the painful shoulder. Van der Heijden, Grauer, and Green did a systematic review of randomized clinical trials on the therapeutic effects of physical modalities on painful shoulder disorders. These authors concluded that there is insufficient evidence to prove or disprove the efficacy of most therapies for the treatment of various shoulder pain syndromes.

Based on these review studies, it appears that ultrasound therapy, transcutaneous electrical nerve stimulation (TENS), magnetotherapy, and different methods of thermotherapy are not effective in the treatment of shoulder disorder. Pulsed electromagnetic field therapy and low power laser could have short-term efficacy as compared with placebo. The lack of proof of efficacy of the different physical modalities was due to small sample sizes and the unsatisfactory methodology of most trials; however, some other trials have shown otherwise.

  • Ultrasound
    • Ebenbichler et al showed in a randomized, double-blind, placebo-controlled study that the use of pulsed ultrasound performed 5 times a week for 15 minutes (0.89 MHz frequency, 2.5 watts per square centimeter, pulsed mode 1:4) significantly resolves calcification of the shoulder, decreases pain, and improves the short-term quality of life (QOL). [27] Long-term follow-up did not show significant differences; however, in the long term, the symptoms of calcifying tendinitis may be self-limiting and may improve independently from the resolution of the calcium deposit.
    • This theory may explain why the use of ultrasound is only significantly effective in the short term. The short-term efficacy of ultrasound therapy has been demonstrated only in calcifying tendinitis. Its efficacy in other shoulder disorders has not been shown. Extracorporeal shock wave therapy
    • Another modality that looks promising is extracorporeal shock wave therapy. Passing a strong electric current through a flat coil inducing a magnetic field generates shock waves. Shock waves were used first for the treatment of delayed and nonunion fractures by stimulating osteogenesis. In an uncontrolled study, shock wave therapy (1500 impulses of 0.28 mj/mm2) reportedly disintegrated calcium deposits partially or completely in 62% of patients, and 75% had significant improvement in pain, power, ROM, and shoulder function. The authors of the study concluded that a larger scale placebo-controlled trial should be conducted to analyze the benefits of this modality.
    • A subsequent prospective, randomized, controlled study by Loew, using valid functional shoulder scale, showed the efficacy of extracorporeal shock wave therapy. At 3-6 months, there was a significant improvement in pain and function. At 6 months, there was radiological disappearance or disintegration of calcium deposits in up to 77% of patients. Comparing different regimens of shock waves, they concluded that the improvement in pain and function, as well as the radiological disintegration of calcification was dose-dependent. Thus, extracorporeal shock wave therapy appears to be a promising treatment for calcifying tendinitis. Like ultrasound, its efficacy in other shoulder conditions has not been established.
  • Iontophoresis
    • Some randomized controlled studies have shown the efficacy of topical steroids, NSAIDs, and acetic acid iontophoresis compared with a placebo in different musculoskeletal disorders; however, those studies were not specifically on rotator cuff disease. Moreover, a later trial did not show any difference in outcomes between no treatment and treatment with acetic acid iontophoresis followed immediately by 9 sessions of ultrasound therapy in a constant mode (0.8 W/cm2 at a frequency of 1 MHz for 5 minutes) over a period of 3 weeks. Some authors could not show any effect of iontophoresis on steroid migration through in vivo and in vitro studies, whereas others did. Thus, it is not possible to draw any conclusions on the efficacy of iontophoresis in the treatment of rotator cuff disease.

Exercises

Publications on rotator cuff disease are rare. Despite the fact that the effectiveness of nonoperative treatment was recognized many years ago and that many authors have emphasized its importance, only 1 randomized controlled study has been published. In a landmark study, Brox compared the efficacy of supervised exercises with arthroscopic surgery and placebo laser. At 6 months, there was a significant difference between the exercise group and the placebo group in terms of pain reduction, function, and increased ROM. However, there was no significant difference between the exercise group and the arthroscopic surgery group.

Other studies on the nonoperative treatment of rotator disease have shown satisfactory and unsatisfactory results, but they were all retrospective uncontrolled trials. Therefore, on the basis of the Brox study, a supervised exercise program should be part the conservative treatment of rotator cuff disease.

It is this author's opinion that an exercises program is the basis of the conservative treatment and no therapeutic modality will provide long-term relief of pain and increased functional status unless it is complemented by an exercise program. The goal of this program is to restore shoulder ROM, enhance glenohumeral and scapulothoracic function to normalize the scapulohumeral motion, and improve the shoulder stability. However, more randomized controlled studies are necessary to support this author's opinion, as well as the findings of the Brox study. The reader is referred to an excellent work by Wilk on shoulder rehabilitation for more information. [28]

Manual therapy

Most of the trials on manual therapy study its efficacy in frozen shoulder. Manual therapy has been compared with no intervention, corticosteroid injection, and cold therapy, and it has not shown any superiority over these modalities. As for exercises, trials on manual therapy in rotator cuff disease are rare. Only 1 randomized clinical trial (Graver JL) exists. [29] This study showed that manual therapy combined with supervised shoulder exercise was superior to supervised shoulder exercise alone for decreasing pain, increasing strength, and improving function at 2 months. Thus, manual therapy may be a useful adjunct to exercises and other therapeutic modalities in the treatment of rotator cuff disease. Of course, further randomized controlled studies are needed to support its efficacy.

Postsurgical therapy

A meta-analysis of randomized trials by Chan et al indicated that following arthroscopic rotator cuff repair, early motion therapy has no significant benefits over delayed therapy in terms of functional outcome. At the same time, the study found no statistically significant difference in the risk of postsurgical retear between the early and delayed-motion groups. There was, compared with delayed motion therapy, a statistically significant improvement in forward elevation following early passive motion rehabilitation, but the investigators stated that the difference probably had no clinical importance. [30]

In another meta-analysis, by Chang et al, patients who underwent early passive ROM exercises demonstrated greater improvement in forward flexion than those who had delayed rehabilitation, but the investigators also found a greater retear rate associated with early ROM in patients who had undergone surgery for large tears. [31]

According to a consensus statement from the American Society of Shoulder and Elbow Therapists on rehabilitation after arthroscopic rotator cuff repair, a 2-week immobilization period should be followed by the staged introduction, from the second to the sixth postoperative week, of protected, passive ROM. Active ROM should then be restored, with postoperative week 12 marking the start of progressive strengthening. The patient should undergo a functional progression, when appropriate, to allow resumption of athletic or demanding job activities. [32]

Next:

Surgical Intervention

Surgery is not part of the conservative treatment and is not discussed here. Readers are referred to the work of Matsen on that topic.

Previous
Next:

Consultations

When symptoms persist after an initial treatment, the primary care physician should refer the patient to a specialist. A consultation in physiatry, orthopedic surgery, or rheumatology should be arranged. Because physiatrists are rehabilitation specialists and because most patients are treated conservatively, the author suggests a consultation in physiatry.

Previous
Next:

Other Treatment

Subacromial corticosteroid injection

As with NSAIDs, there are many studies with poor methodological quality on the efficacy of corticosteroid injection in various shoulder conditions. Green, Van Der Heijden, and Sibilia have done a systematic review of all the randomized clinical trials on corticosteroid injection. Although the trials selected were essentially the same in the 3 studies, their conclusions differ because of the different assessment methods. Two of these articles suggested that corticosteroid injection may be superior to placebo in the short-term treatment of rotator cuff tendinitis, whereas one suggested that there is no conclusive evidence about the efficacy of corticosteroid injection.

Subacromial corticosteroid and local anesthetic agent injection also appears to be more effective than an injection of a local anesthetic alone, although some authors disagree. Corticosteroid injection also appears to be significantly more effective than NSAIDs. Therefore, subacromial corticosteroid injection appears indicated when pain persists after simple analgesic and NSAIDs have been used.

  • Number of injections: Because some authors have reported poorer surgical outcome in patients who have had 3 or more corticosteroid injections, it is recommended that no more than 2 injections are given.
  • Route of injection: No trials compare the different routes of corticosteroid injection, so the physician should select his or her preferred route.
  • Type of corticosteroid: No trial exists comparing the efficacy of different corticosteroids. Triamcinolone acetonide is the agent most frequently studied.
  • Action mechanism: Inhibition of prostaglandin formation by inhibiting more selectively the COX-2 activity is the mechanism of action.
  • Dose: The optimal dose has not been evaluated. Recommended doses vary from 20-80 mg in the different trials. This author recommends 20-40 mg of triamcinolone acetonide.
  • Side effects: Side effects can be local or systemic. Although systemic side effects can occur following a subacromial injection, only local side effects are discussed here, including the following:
    • Dermal atrophy
    • Necrosis and loss of pigmentation
    • Synovitis
    • Septic arthritis
    • Hemarthroses
    • Cartilage damage and degeneration
    • Tendon rupture
    • Charcot arthropathy

Bupivacaine suprascapular nerve block

The bupivacaine suprascapular nerve block is a relatively unknown, although effective, method to treat different painful shoulder disorders. Few randomized controlled trials have shown its efficacy in painful shoulder of rheumatoid arthritis patients, chronic rotator cuff disease, and frozen shoulder. Preliminary data of a study on chronic impingement syndrome conducted at the Montreal Rehabilitation Institute show its efficacy as compared with placebo. At 3 months, a significant improvement in pain and function measured by a valid functional shoulder scale was observed. Supported by randomized controlled studies, this procedure appears to be a very promising new approach in the treatment of rotator cuff disease.

The technique for nerve block is very inexpensive, simple and safe, and consists of injecting 10 mL of bupivacaine 0.5% in the supraspinatus fossa of the scapula to produce an indirect suprascapular nerve block. In rotator cuff disease, 2 injections are administered 4 weeks apart.

Edetate disodium (disodium EDTA)

Cacchio et al investigated the effectiveness of disodium EDTA treatment for calcific tendinitis of the shoulder, administering the drug to 40 patients with the condition and evaluating them against 40 patients with calcific tendinitis who did not receive the therapy. [33] By 1-year follow-up, the calcifications had completely cleared up in 62.5% of the patients who received disodium EDTA and had partially disappeared in 22.5% of them. Among patients in the control group, none of the calcifications vanished completely, although partial disappearance occurred in 15% of these individuals. The investigators suggested that disodium EDTA therapy offers a safe and effective treatment for calcific tendinitis of the shoulder.

Previous