Erectile Dysfunction Workup

Updated: Jul 19, 2022
  • Author: Edward David Kim, MD, FACS; Chief Editor: Edward David Kim, MD, FACS  more...
  • Print

Approach Considerations

The laboratory investigation for erectile dysfunction (ED) depends on information gathered during the interview. Laboratory testing is necessary for most patients, though not for all. On the basis of these study results, the physician should be able to determine the medical status of the patient, to identify and characterize the type of dysfunction, and to determine the need for additional testing (eg, penile or pelvic blood flow studies, nocturnal penile tumescence testing, or other blood tests).

Imaging studies are rarely performed, except in situations involving pelvic trauma or surgery.

In making any decisions about further management or referral, the patient’s needs, expectations, and priorities should be discussed and taken into account.


Laboratory Studies

Hormonal blood tests

According to an American College of Physicians (ACP) guideline, the evidence for the utility of hormonal blood tests in identifying and affecting therapeutic outcomes for treatable causes of ED is inconclusive. The ACP makes no recommendations either for or against routine use of hormonal blood tests or hormonal treatment in the management of patients with ED. Clinicians should make decisions to measure hormone levels on a case-by-case basis, in accordance with the patient’s clinical presentation.

Patients who express a loss of libido, depression, or any signs of diminished secondary sexual characteristics should undergo an endocrine evaluation. At a minimum, this should consist of measuring morning serum testosterone levels.

The relative merits of measuring total, free, and bioavailable testosterone levels and serum hormone–binding globulin are controversial. In screening for hypogonadism, total and free testosterone levels should be measured to investigate the hypothalamic-pituitary-gonadal axis. Testosterone levels peak at about 8 AM; thus, a morning level should be checked whenever possible. Free or bioavailable testosterone is important because it is the testosterone that is usable; the rest is attached mainly to serum hormone–binding globulin.

Measurement of luteinizing hormone (LH) may be helpful. LH levels vary according to the body’s need for testosterone. The hypothalamus regulates testosterone levels by releasing or inhibiting LH-releasing hormone (LHRH), which acts in the pituitary to produce LH. A high LH level associated with a low testosterone level implies primary testicular (Leydig cell) failure. Conversely, a low LH level associated with a low testosterone level suggests a central defect.

In some instances, prolactin levels may be helpful as well. A serum prolactin level is obtained if the patient has evidence of pituitary hyperfunction (eg, from a pituitary tumor) or if low serum testosterone levels have been documented.

A serum thyroid-stimulating hormone (TSH) evaluation is appropriate in selected patients.

Other blood tests

Additional useful screening studies include the following:

  • Hemoglobin A1c

  • Serum chemistry panel

  • Lipid profile

These studies should be considered unless the patient has had them performed recently and the results are available.

Measurement of prostate-specific antigen (PSA) levels may be appropriate if the patient is a candidate for prostate cancer screening. Such screening is controversial, however, and should be performed only after its risks and benefits have been reviewed with the patient (see Prostate Cancer).


Performing a urinalysis is recommended. The presence of red blood cells (RBCs), white blood cells (WBCs), protein, or glucose can be important clues to a genitourinary disorder.


Injection of Prostaglandin E1

A test used to evaluate penile function is the direct injection of prostaglandin E1 (PGE1; alprostadil) into one of the corpora cavernosa (see the images below). If the penile vasculature is normal or at least adequate, an erection should develop within several minutes. The patient and the clinician can judge the quality of the erection. If successful, this test also establishes penile injections as a possible therapy.

A vasodilator such as prostaglandin E1 can be inje A vasodilator such as prostaglandin E1 can be injected into one of the corpora cavernosa. If the blood vessels are capable of dilating, a strong erection should develop within 5 minutes.
Erectile dysfunction. This diagram depicts a cross Erectile dysfunction. This diagram depicts a cross-section of penile anatomy and is used to instruct patients in the technique of administering intracorporeal medications.


The sensitivity of the skin of the penis to detect vibrational stimuli (ie, biothesiometry) can be employed as a simple nerve function office screening test, but it is infrequently indicated. In this test, a small electromagnetic test probe is placed on the right and left sides of the penile shaft and on the glans. The vibrational amplitude is adjusted until the subjective sensory threshold is reached, which is determined by questioning the patient (see the image below).

The presence of normal skin sensation adequate to The presence of normal skin sensation adequate to produce an erection is measured with this device.

A series of these tests determines the average vibrational sensory threshold in each location; these thresholds are then compared with reference range standards for the patient’s age group. Although this test does not directly measure erectile nerve function, it serves as a reasonable means of screening for possible sensory deficit and is simple to perform. Formal nerve conduction studies (eg, bulbocavernosus reflex latency time) are reserved for very specific situations.



Vascular function within the penis can be evaluated by means of duplex ultrasonography. In this procedure, blood flow in the cavernosal arteries within the corpora cavernosa is measured before and after the intracavernosal injection of a test dose of a standard vasodilator (eg, 20 µg of PGE1).

Criteria for evaluating the study results vary to some degree. A peak systolic velocity lower than 25 cm/sec is generally agreed to indicate arterial insufficiency. The proposed value for the lower limit of normal ranges from 25-35 cm/sec, but a peak systolic velocity of 35 cm/sec or higher clearly rules out arterial insufficiency. End-diastolic velocity serves as a proxy for venous outflow; a velocity of 5 cm/sec or lower when the penis is at full rigidity indicates the absence of abnormal venous leakage.


Nocturnal Penile Tumescence Testing

Nocturnal penile tumescence testing involves placing several bands around the penis, connected to a device such as the Rigiscan monitor, and instructing the patient to wear the assembly for 2 or 3 successive nights. If an erection occurs, which is expected during rapid eye movement sleep, its force and duration are measured on a graph (see the image below). Inadequate or absent nocturnal erections suggest organic dysfunction, whereas a normal result indicates a high likelihood of a psychogenic etiology.

This penile tumescence monitor is placed at the ba This penile tumescence monitor is placed at the base and near the corona of the penis. It is connected to a monitor that records a continuous graph depicting the force and duration of erections that occur during sleep. The monitor is strapped to the leg. The nocturnal penile tumescence test is conducted on several nights to obtain an accurate indication of erections that normally occur during the alpha phase of sleep.

Nocturnal penile tumescence testing was once frequently performed; it was thought to be useful in distinguishing psychogenic from organic impotence. Currently, other devices are available that provide similar information. Some are also able to measure rigidity (resistance to mild compression) and tumescence (size). Nocturnal penile tumescence testing is rarely used in current practice, but it can be helpful in situations where the diagnosis is in doubt.


Other Studies

Angiography is useful if the patient is a potential candidate for some type of vascular surgery. Young men with traumatic vascular injuries resulting in ED are candidates for this angiography because they may qualify for a vascular reconstruction.

In the vast majority of patients with ED, formal neurologic testing is unnecessary. However, those with a history of central nervous system (CNS) problems, peripheral neuropathy, diabetes, or penile sensory deficit may benefit from some level of neurologic testing.